Sturm-Liouville matrix differential systems with singular leading coefficient
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094553" target="_blank" >RIV/00216224:14310/17:00094553 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10231-016-0611-6" target="_blank" >http://dx.doi.org/10.1007/s10231-016-0611-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-016-0611-6" target="_blank" >10.1007/s10231-016-0611-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sturm-Liouville matrix differential systems with singular leading coefficient
Popis výsledku v původním jazyce
In this paper we study a general even order symmetric Sturm-Liouville matrix differential equation, whose leading coefficient may be singular on the whole interval under consideration. Such an equation is new in the current literature, as it is equivalent with a system of Sturm-Liouville equations with different orders. We identify the so-called normal form of this equation, which allows to transform this equation into a standard (controllable) linear Hamiltonian system. Based on this new transformation we prove that the associated eigenvalue problem with Dirichlet boundary conditions possesses all the traditional spectral properties, such as the equality of the geometric and algebraic multiplicities of the eigenvalues, orthogonality of the eigenfunctions, the oscillation theorem and Rayleigh's principle, and the Fourier expansion theorem. We also discuss sufficient conditions, which allow to reduce a general even order symmetric Sturm-Liouville matrix differential equation into the normal form. Throughout the paper we provide several examples, which illustrate our new theory.
Název v anglickém jazyce
Sturm-Liouville matrix differential systems with singular leading coefficient
Popis výsledku anglicky
In this paper we study a general even order symmetric Sturm-Liouville matrix differential equation, whose leading coefficient may be singular on the whole interval under consideration. Such an equation is new in the current literature, as it is equivalent with a system of Sturm-Liouville equations with different orders. We identify the so-called normal form of this equation, which allows to transform this equation into a standard (controllable) linear Hamiltonian system. Based on this new transformation we prove that the associated eigenvalue problem with Dirichlet boundary conditions possesses all the traditional spectral properties, such as the equality of the geometric and algebraic multiplicities of the eigenvalues, orthogonality of the eigenfunctions, the oscillation theorem and Rayleigh's principle, and the Fourier expansion theorem. We also discuss sufficient conditions, which allow to reduce a general even order symmetric Sturm-Liouville matrix differential equation into the normal form. Throughout the paper we provide several examples, which illustrate our new theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata. Series IV
ISSN
0373-3114
e-ISSN
—
Svazek periodika
196
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
1165-1183
Kód UT WoS článku
000402126700017
EID výsledku v databázi Scopus
2-s2.0-84988358915