AN ABSTRACT ELEMENTARY CLASS NONAXIOMATIZABLE IN L-infinity,L-kappa
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113476" target="_blank" >RIV/00216224:14310/19:00113476 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/an-abstract-elementary-class-nonaxiomatizable-in-linfty-kappa/87EC4FD7FED3B22F244271585EAD99B8" target="_blank" >https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/an-abstract-elementary-class-nonaxiomatizable-in-linfty-kappa/87EC4FD7FED3B22F244271585EAD99B8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2019.25" target="_blank" >10.1017/jsl.2019.25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AN ABSTRACT ELEMENTARY CLASS NONAXIOMATIZABLE IN L-infinity,L-kappa
Popis výsledku v původním jazyce
We show that for any uncountable cardinal lambda, the category of sets of cardinality at least lambda and monomorphisms between them cannot appear as the category of points of a topos, in particular is not the category of models of a L-infinity,L-omega-theory. More generally we show that for any regular cardinal kappa < lambda it is neither the category of kappa-points of a kappa-topos, in particular, nor the category of models of a L-infinity,L-kappa-theory. The proof relies on the construction of a categorified version of the Scott topology, which constitute a left adjoint to the functor sending any topos to its category of points and the computation of this left adjoint evaluated on the category of sets of cardinality at least lambda and monomorphisms between them. The same techniques also apply to a few other categories. At least to the category of vector spaces of with bounded below dimension and the category of algebraic closed fields of fixed characteristic with bounded below transcendence degree.
Název v anglickém jazyce
AN ABSTRACT ELEMENTARY CLASS NONAXIOMATIZABLE IN L-infinity,L-kappa
Popis výsledku anglicky
We show that for any uncountable cardinal lambda, the category of sets of cardinality at least lambda and monomorphisms between them cannot appear as the category of points of a topos, in particular is not the category of models of a L-infinity,L-omega-theory. More generally we show that for any regular cardinal kappa < lambda it is neither the category of kappa-points of a kappa-topos, in particular, nor the category of models of a L-infinity,L-kappa-theory. The proof relies on the construction of a categorified version of the Scott topology, which constitute a left adjoint to the functor sending any topos to its category of points and the computation of this left adjoint evaluated on the category of sets of cardinality at least lambda and monomorphisms between them. The same techniques also apply to a few other categories. At least to the category of vector spaces of with bounded below dimension and the category of algebraic closed fields of fixed characteristic with bounded below transcendence degree.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1240-1251
Kód UT WoS článku
000487036000018
EID výsledku v databázi Scopus
2-s2.0-85072311928