Distribution and number of focal points for linear Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118790" target="_blank" >RIV/00216224:14310/21:00118790 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.laa.2020.11.018" target="_blank" >https://doi.org/10.1016/j.laa.2020.11.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2020.11.018" target="_blank" >10.1016/j.laa.2020.11.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distribution and number of focal points for linear Hamiltonian systems
Popis výsledku v původním jazyce
In this paper we consider the question of distribution and number of left and right focal points for conjoined bases of linear Hamiltonian differential systems. We do not assume any complete controllability (identical normality) condition. Recently we obtained the Sturmian separation theorem for this case which provides optimal lower and upper bounds for the numbers of left and right focal points of every conjoined basis in terms of the principal solutions at the endpoints of the interval. In this paper we show that for any two given integers within these bounds there exists a conjoined basis with these prescribed numbers of left and right focal points. We determine such conjoined bases by their initial conditions. Our approach is to transfer the problem through the comparative index into matrix analysis. The main results are new even for completely controllable linear Hamiltonian systems. As an application we extend a classical result for controllable systems by Reid (1971) about the existence of conjoined bases with an invertible first component.
Název v anglickém jazyce
Distribution and number of focal points for linear Hamiltonian systems
Popis výsledku anglicky
In this paper we consider the question of distribution and number of left and right focal points for conjoined bases of linear Hamiltonian differential systems. We do not assume any complete controllability (identical normality) condition. Recently we obtained the Sturmian separation theorem for this case which provides optimal lower and upper bounds for the numbers of left and right focal points of every conjoined basis in terms of the principal solutions at the endpoints of the interval. In this paper we show that for any two given integers within these bounds there exists a conjoined basis with these prescribed numbers of left and right focal points. We determine such conjoined bases by their initial conditions. Our approach is to transfer the problem through the comparative index into matrix analysis. The main results are new even for completely controllable linear Hamiltonian systems. As an application we extend a classical result for controllable systems by Reid (1971) about the existence of conjoined bases with an invertible first component.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
611
Číslo periodika v rámci svazku
February 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
26-45
Kód UT WoS článku
000600065400002
EID výsledku v databázi Scopus
2-s2.0-85097336569