New examples of 2-nondegenerate real hypersurfaces in C^N with arbitrary nilpotent symbols
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139728" target="_blank" >RIV/00216224:14310/24:00139728 - isvavai.cz</a>
Výsledek na webu
<a href="https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12962" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12962</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12962" target="_blank" >10.1112/jlms.12962</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New examples of 2-nondegenerate real hypersurfaces in C^N with arbitrary nilpotent symbols
Popis výsledku v původním jazyce
We introduce a class of uniformly 2-nondegenerate CR hypersurfaces in C-N, for N > 3, having a rank 1 Levi kernel. The class is first of all remarkable by the fact that for every N > 3 it forms an explicit infinite-dimensional family of every where 2-nondegenerate hypersurfaces. To the best of our knowledge, this is the first such construction. Besides, the class contains infinite-dimensional families of nonequivalent structures having a given constant nilpotent CR symbol for every such symbol. Using methods that are able to handle all cases with N > 5simultaneously, we solve the equivalence problem for the considered structures whose symbol is represented by a single Jordan block, classify their algebras of infinitesimal symmetries, and classify the locally homogeneous structures among them. We show that the remaining considered structures, which have symbols represented by a direct sum of Jordan blocks, can be constructed from the single block structures through simple linking and extension processes.
Název v anglickém jazyce
New examples of 2-nondegenerate real hypersurfaces in C^N with arbitrary nilpotent symbols
Popis výsledku anglicky
We introduce a class of uniformly 2-nondegenerate CR hypersurfaces in C-N, for N > 3, having a rank 1 Levi kernel. The class is first of all remarkable by the fact that for every N > 3 it forms an explicit infinite-dimensional family of every where 2-nondegenerate hypersurfaces. To the best of our knowledge, this is the first such construction. Besides, the class contains infinite-dimensional families of nonequivalent structures having a given constant nilpotent CR symbol for every such symbol. Using methods that are able to handle all cases with N > 5simultaneously, we solve the equivalence problem for the considered structures whose symbol is represented by a single Jordan block, classify their algebras of infinitesimal symmetries, and classify the locally homogeneous structures among them. We show that the remaining considered structures, which have symbols represented by a direct sum of Jordan blocks, can be constructed from the single block structures through simple linking and extension processes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-15012J" target="_blank" >GC22-15012J: Hladká a analytická regularita v CR geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Svazek periodika
110
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
1-36
Kód UT WoS článku
001288981200004
EID výsledku v databázi Scopus
2-s2.0-85199141265