Generalizations of the distributed Deutsch-Jozsa promise problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095802" target="_blank" >RIV/00216224:14330/17:00095802 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9690749&fileId=S0960129515000158" target="_blank" >http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9690749&fileId=S0960129515000158</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129515000158" target="_blank" >10.1017/S0960129515000158</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalizations of the distributed Deutsch-Jozsa promise problem
Popis výsledku v původním jazyce
In the distributed Deutsch–Jozsa promise problem, two parties are to determine whether their respective strings x, y in {0,1} n are at the Hamming distance H(x, y) = 0 or H(x, y) = $frac{n}{2}$. Buhrman et al. (STOC' 98) proved that the exact quantum communication complexity of this problem is O(log n) while the deterministic communication complexity is Omega(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed $frac{n}{2}$ <= k <= n, whether H(x, y) = 0 or H(x, y) = k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if k is an even such that $frac{1}{2}$n <= k < (1 - lambda)n, where 0 < lambda < $frac{1}{2}$ is given. We also deal with a promise version of the well-known disjointness problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.
Název v anglickém jazyce
Generalizations of the distributed Deutsch-Jozsa promise problem
Popis výsledku anglicky
In the distributed Deutsch–Jozsa promise problem, two parties are to determine whether their respective strings x, y in {0,1} n are at the Hamming distance H(x, y) = 0 or H(x, y) = $frac{n}{2}$. Buhrman et al. (STOC' 98) proved that the exact quantum communication complexity of this problem is O(log n) while the deterministic communication complexity is Omega(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed $frac{n}{2}$ <= k <= n, whether H(x, y) = 0 or H(x, y) = k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if k is an even such that $frac{1}{2}$n <= k < (1 - lambda)n, where 0 < lambda < $frac{1}{2}$ is given. We also deal with a promise version of the well-known disjointness problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Zaměstnáním čerstvých absolventů doktorského studia k vědecké excelenci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
311-331
Kód UT WoS článku
000395533500001
EID výsledku v databázi Scopus
2-s2.0-84929008498