The Parameterized Complexity of Cascading Portfolio Scheduling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113727" target="_blank" >RIV/00216224:14330/19:00113727 - isvavai.cz</a>
Výsledek na webu
<a href="http://papers.nips.cc/paper/8983-the-parameterized-complexity-of-cascading-portfolio-scheduling" target="_blank" >http://papers.nips.cc/paper/8983-the-parameterized-complexity-of-cascading-portfolio-scheduling</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Parameterized Complexity of Cascading Portfolio Scheduling
Popis výsledku v původním jazyce
Cascading portfolio scheduling is a static algorithm selection strategy which uses a sample of test instances to compute an optimal ordering (a cascading schedule) of a portfolio of available algorithms. The algorithms are then applied to each future instance according to this cascading schedule, until some algorithm in the schedule succeeds. Cascading algorithm scheduling has proven to be effective in several applications, including QBF solving and the generation of ImageNet classification models. It is known that the computation of an optimal cascading schedule in the offline phase is NP-hard. In this paper we study the parameterized complexity of this problem and establish its fixed-parameter tractability by utilizing structural properties of the success relation between algorithms and test instances. Our findings are significant as they reveal that in spite of the intractability of the problem in its general form, one can indeed exploit sparseness or density of the success relation to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.
Název v anglickém jazyce
The Parameterized Complexity of Cascading Portfolio Scheduling
Popis výsledku anglicky
Cascading portfolio scheduling is a static algorithm selection strategy which uses a sample of test instances to compute an optimal ordering (a cascading schedule) of a portfolio of available algorithms. The algorithms are then applied to each future instance according to this cascading schedule, until some algorithm in the schedule succeeds. Cascading algorithm scheduling has proven to be effective in several applications, including QBF solving and the generation of ImageNet classification models. It is known that the computation of an optimal cascading schedule in the offline phase is NP-hard. In this paper we study the parameterized complexity of this problem and establish its fixed-parameter tractability by utilizing structural properties of the success relation between algorithms and test instances. Our findings are significant as they reveal that in spite of the intractability of the problem in its general form, one can indeed exploit sparseness or density of the success relation to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Neural Information Processing Systems 32 (NIPS 2019)
ISBN
9781728110448
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
7666-7676
Název nakladatele
Neural Information Processing Systems Foundation, Inc.
Místo vydání
USA
Místo konání akce
Canada
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000534424307066