Validity and Reliability of Student Models for Problem-Solving Activities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121402" target="_blank" >RIV/00216224:14330/21:00121402 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3448139.3448140" target="_blank" >https://dl.acm.org/doi/10.1145/3448139.3448140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3448139.3448140" target="_blank" >10.1145/3448139.3448140</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Validity and Reliability of Student Models for Problem-Solving Activities
Popis výsledku v původním jazyce
Student models are typically evaluated through predicting the correctness of the next answer. This approach is insufficient in the problem-solving context, especially for student models that use performance data beyond binary correctness. We propose more comprehensive methods for validating student models and illustrate them in the context of introductory programming. We demonstrate the insufficiency of the next answer correctness prediction task, as it is neither able to reveal low validity of student models that use just binary correctness, nor does it show increased validity of models that use other performance data. The key message is that the prevalent usage of the next answer correctness for validating student models and binary correctness as the only input to the models is not always warranted and limits the progress in learning analytics.
Název v anglickém jazyce
Validity and Reliability of Student Models for Problem-Solving Activities
Popis výsledku anglicky
Student models are typically evaluated through predicting the correctness of the next answer. This approach is insufficient in the problem-solving context, especially for student models that use performance data beyond binary correctness. We propose more comprehensive methods for validating student models and illustrate them in the context of introductory programming. We demonstrate the insufficiency of the next answer correctness prediction task, as it is neither able to reveal low validity of student models that use just binary correctness, nor does it show increased validity of models that use other performance data. The key message is that the prevalent usage of the next answer correctness for validating student models and binary correctness as the only input to the models is not always warranted and limits the progress in learning analytics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th International Conference on Learning Analytics and Knowledge
ISBN
9781450389358
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY, USA
Místo konání akce
Irvine CA USA
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000883342500001