Adapting Is Difficult! Introducing a Generic Adaptive Learning Framework for Learner Modeling and Task Recommendation Based on Dynamic Bayesian Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130708" target="_blank" >RIV/00216224:14330/23:00130708 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0011964700003470" target="_blank" >http://dx.doi.org/10.5220/0011964700003470</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0011964700003470" target="_blank" >10.5220/0011964700003470</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adapting Is Difficult! Introducing a Generic Adaptive Learning Framework for Learner Modeling and Task Recommendation Based on Dynamic Bayesian Networks
Popis výsledku v původním jazyce
The process of learning is a personal experience, strongly influenced by the learning environment. Virtual learning environments (VLEs) provide the potential for adaptive learning, which aims to individualize learning experiences in order to improve learning outcomes. Adaptive learning environments achieve individualization by analyzing the learners and altering the instruction according to their specific needs and goals. Despite ongoing research in adaptive learning, the effort to design, develop and implement such environments remains high. Therefore, we introduce a novel, generalized adaptive learning framework based on the methodological Evidence-Centered Design (ECD) framework. Our framework focuses on the analysis of learners’ competencies and the subsequent recommendation of tasks with an appropriate difficulty level. With this paper and the open-source adaptive learning framework, we contribute to the ongoing discussion about generalized adaptive learning technology.
Název v anglickém jazyce
Adapting Is Difficult! Introducing a Generic Adaptive Learning Framework for Learner Modeling and Task Recommendation Based on Dynamic Bayesian Networks
Popis výsledku anglicky
The process of learning is a personal experience, strongly influenced by the learning environment. Virtual learning environments (VLEs) provide the potential for adaptive learning, which aims to individualize learning experiences in order to improve learning outcomes. Adaptive learning environments achieve individualization by analyzing the learners and altering the instruction according to their specific needs and goals. Despite ongoing research in adaptive learning, the effort to design, develop and implement such environments remains high. Therefore, we introduce a novel, generalized adaptive learning framework based on the methodological Evidence-Centered Design (ECD) framework. Our framework focuses on the analysis of learners’ competencies and the subsequent recommendation of tasks with an appropriate difficulty level. With this paper and the open-source adaptive learning framework, we contribute to the ongoing discussion about generalized adaptive learning technology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 15th International Conference on Computer Supported Education - Volume 1
ISBN
9789897586415
ISSN
2184-5026
e-ISSN
—
Počet stran výsledku
9
Strana od-do
272-280
Název nakladatele
SciTePress
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—