Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F24%3A00139609" target="_blank" >RIV/00216224:14560/24:00139609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S105752192400348X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S105752192400348X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.irfa.2024.103416" target="_blank" >10.1016/j.irfa.2024.103416</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms

  • Popis výsledku v původním jazyce

    The literature on peer-to-peer loan market performance focuses predominantly on the microlevel variables connected to individual borrower or loan characteristics. We hypothesize that the economic environment, reflected by macroeconomic variables at the time of loan origination, should play a role in explaining loans’ future performance. Our dataset comprises two US-based platforms and one UK-based platform, which provides a rich field to verify our hypothesis with numerous loan-related variables. Specifically, we consider Lending Club with 1,169,976 individual loans and 128 variables, Prosper with 386,685 loans and 142 variables, and Zopa with 440,493 loans and 192 variables. Using linear and threshold regressions, we observe three main findings: (i) accounting for the macroeconomic environment systematically improves our understanding of the variation in the future performance of individual loans; (ii) demand-side variables, particularly the unemployment rate and industrial production, have stronger effects as supply-side and economic uncertainty variables; and (iii) the importance (effect size) of the macroeconomic environment is at least at the level of that of calendar and geographic variables but much smaller than the importance of loan or borrower characteristics. These results suggest that the economic environment might be useful in individual loan-level credit risk models.

  • Název v anglickém jazyce

    Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms

  • Popis výsledku anglicky

    The literature on peer-to-peer loan market performance focuses predominantly on the microlevel variables connected to individual borrower or loan characteristics. We hypothesize that the economic environment, reflected by macroeconomic variables at the time of loan origination, should play a role in explaining loans’ future performance. Our dataset comprises two US-based platforms and one UK-based platform, which provides a rich field to verify our hypothesis with numerous loan-related variables. Specifically, we consider Lending Club with 1,169,976 individual loans and 128 variables, Prosper with 386,685 loans and 142 variables, and Zopa with 440,493 loans and 192 variables. Using linear and threshold regressions, we observe three main findings: (i) accounting for the macroeconomic environment systematically improves our understanding of the variation in the future performance of individual loans; (ii) demand-side variables, particularly the unemployment rate and industrial production, have stronger effects as supply-side and economic uncertainty variables; and (iii) the importance (effect size) of the macroeconomic environment is at least at the level of that of calendar and geographic variables but much smaller than the importance of loan or borrower characteristics. These results suggest that the economic environment might be useful in individual loan-level credit risk models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF22-35130K" target="_blank" >GF22-35130K: Modely úvěrového rizika na P2P trzích využívající teorie grafů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS

  • ISSN

    1057-5219

  • e-ISSN

    1873-8079

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    001267730500001

  • EID výsledku v databázi Scopus

    2-s2.0-85197519001