Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Visit rate analysis of course activities: Case study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F15%3A39902626" target="_blank" >RIV/00216275:25410/15:39902626 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICETA.2015.7558507" target="_blank" >http://dx.doi.org/10.1109/ICETA.2015.7558507</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICETA.2015.7558507" target="_blank" >10.1109/ICETA.2015.7558507</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Visit rate analysis of course activities: Case study

  • Popis výsledku v původním jazyce

    One of the most important areas of optimizing the learning environment in distance education is to analyze the behavior of students in eLearning courses. The aim of the paper is to summarize the field of Educational data mining, analyze the behavior of students in e-course Computer data analysis and to present a few cases of a similar analysis of the behavior of students. The results of the analysis may have potential for future use in optimizing the e-course. Analysis results were obtained using extracted association rules from the e-course. This electronic course is designed to use linear and branched teaching programs. Target group research were students of Computer Science, which was reflected in the results. It is not necessary to have special knowledge of IT to work in e-course. The course was created using LMS Moodle, which records the behaviour of users to the database. We used specific types of data, which indicate user traffic on every single page of the course. We used the log file containing records with the behavior of 69 students in e-course. Session identification is for the distribution of accesses of all users of e-course to separated sessions. Students are identified by their login ID. Therefore, we can separate the users who share a computer. Students who have used e-course Computer data analysis, were successful in the final test. By analyzing we can improve e-course. After implementation of necessary changes we can evaluate impact of these changes in the efficacy of the course.

  • Název v anglickém jazyce

    Visit rate analysis of course activities: Case study

  • Popis výsledku anglicky

    One of the most important areas of optimizing the learning environment in distance education is to analyze the behavior of students in eLearning courses. The aim of the paper is to summarize the field of Educational data mining, analyze the behavior of students in e-course Computer data analysis and to present a few cases of a similar analysis of the behavior of students. The results of the analysis may have potential for future use in optimizing the e-course. Analysis results were obtained using extracted association rules from the e-course. This electronic course is designed to use linear and branched teaching programs. Target group research were students of Computer Science, which was reflected in the results. It is not necessary to have special knowledge of IT to work in e-course. The course was created using LMS Moodle, which records the behaviour of users to the database. We used specific types of data, which indicate user traffic on every single page of the course. We used the log file containing records with the behavior of 69 students in e-course. Session identification is for the distribution of accesses of all users of e-course to separated sessions. Students are identified by their login ID. Therefore, we can separate the users who share a computer. Students who have used e-course Computer data analysis, were successful in the final test. By analyzing we can improve e-course. After implementation of necessary changes we can evaluate impact of these changes in the efficacy of the course.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICETA 2015 - 13th IEEE International Conference on Emerging eLearning Technologies and Applications : Proceedings

  • ISBN

    978-1-4673-8534-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE (Institute of Electrical and Electronics Engineers)

  • Místo vydání

    New York

  • Místo konání akce

    Starý Smokovec

  • Datum konání akce

    26. 11. 2015

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku