Machine learning in finance and accounting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917736" target="_blank" >RIV/00216275:25410/21:39917736 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-1/machine-learning-finance-accounting-mohammad-zoynul-abedin-kabir-hassan-petr-hajek-mohammed-mohi-uddin?context=ubx&refId=9d4617ee-6112-4f80-9ebf-7b200e98c97e" target="_blank" >https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-1/machine-learning-finance-accounting-mohammad-zoynul-abedin-kabir-hassan-petr-hajek-mohammed-mohi-uddin?context=ubx&refId=9d4617ee-6112-4f80-9ebf-7b200e98c97e</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning in finance and accounting
Popis výsledku v původním jazyce
This introduction presents an overview of the key concepts discussed in the subsequent chapters of this book. The book reviews Breiman’s CART algorithm, classification features, and non-parametric methods, i.e., decision trees and random forests. It applies Machine learning (ML) to enhance longevity risk management by life insurance companies and pension fund managers. The book shows how ML can help improve mortality forecasting. It introduces kernel switching ridge regression, an ML method. The book argues that the method can make predictions from multiple “regimes of dataset” and “can overcome the unstable solution and the curse of dimensionality”. It describes sentiment analysis in predicting stock return volatilities. The book explores some important concepts and ML algorithms, and applications of machine learning techniques in the fields of economics and finance. It focuses on the use of ML and artificial intelligence (AI) in financial services industry.
Název v anglickém jazyce
Machine learning in finance and accounting
Popis výsledku anglicky
This introduction presents an overview of the key concepts discussed in the subsequent chapters of this book. The book reviews Breiman’s CART algorithm, classification features, and non-parametric methods, i.e., decision trees and random forests. It applies Machine learning (ML) to enhance longevity risk management by life insurance companies and pension fund managers. The book shows how ML can help improve mortality forecasting. It introduces kernel switching ridge regression, an ML method. The book argues that the method can make predictions from multiple “regimes of dataset” and “can overcome the unstable solution and the curse of dimensionality”. It describes sentiment analysis in predicting stock return volatilities. The book explores some important concepts and ML algorithms, and applications of machine learning techniques in the fields of economics and finance. It focuses on the use of ML and artificial intelligence (AI) in financial services industry.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Essentials of Machine Learning in Finance and Accounting
ISBN
978-0-367-48083-7
Počet stran výsledku
5
Strana od-do
1-5
Počet stran knihy
258
Název nakladatele
Taylor & Francis Ltd.
Místo vydání
Abingdon
Kód UT WoS kapitoly
—