Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Continuity of GNSS as a critical attribute for safety applications in land transport

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39921570" target="_blank" >RIV/00216275:25530/24:39921570 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-61937-z" target="_blank" >https://www.nature.com/articles/s41598-024-61937-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-61937-z" target="_blank" >10.1038/s41598-024-61937-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Continuity of GNSS as a critical attribute for safety applications in land transport

  • Popis výsledku v původním jazyce

    The Global Navigation Satellite System (GNSS) is widely used for air traffic management-more than 150,000 aircraft and 5000 airports worldwide are equipped with SBAS (Satellite-based augmentation system) technology, which contributes to safer and more efficient air operations. The next challenge is to extend GNSS positioning to maritime, autonomous cars and railway control systems preserving their safety requirements. The main parameter is the integrity of the GNSS positioning, although the time for which the integrity is guaranteed, defined by continuity, the most demanding requirement for aviation applications, has not been sufficiently investigated for land transportation. The aim of this paper is to close this gap by clarifying: (1) where the requirement for GNSS continuity comes from, (2) why GNSS continuity is needed in land transport, and (3) how GNSS-based applications can be made more reliable when needed. Using a comparative analysis, the continuity requirements in aviation, rail, maritime, and road transport have been investigated showing their importance for railways and automotive control, paving the way to eventually update the current EN 50126 (RAMS) and ISO/TR 4804 standards respectively for railways and automated cars. One of the main findings, through Markov modeling, is the improvement of the Mean Time to System Failure (MTTFsys) that for the railway safety-of-life applications can be significantly increased from about 521 h up to 5 x 105 h. These results can contribute to accelerating the adoption of GNSS positioning for automated land transportation, by exploiting the extensive experience brought by the aviation sector where GNSS was introduced 20 years ago.

  • Název v anglickém jazyce

    Continuity of GNSS as a critical attribute for safety applications in land transport

  • Popis výsledku anglicky

    The Global Navigation Satellite System (GNSS) is widely used for air traffic management-more than 150,000 aircraft and 5000 airports worldwide are equipped with SBAS (Satellite-based augmentation system) technology, which contributes to safer and more efficient air operations. The next challenge is to extend GNSS positioning to maritime, autonomous cars and railway control systems preserving their safety requirements. The main parameter is the integrity of the GNSS positioning, although the time for which the integrity is guaranteed, defined by continuity, the most demanding requirement for aviation applications, has not been sufficiently investigated for land transportation. The aim of this paper is to close this gap by clarifying: (1) where the requirement for GNSS continuity comes from, (2) why GNSS continuity is needed in land transport, and (3) how GNSS-based applications can be made more reliable when needed. Using a comparative analysis, the continuity requirements in aviation, rail, maritime, and road transport have been investigated showing their importance for railways and automotive control, paving the way to eventually update the current EN 50126 (RAMS) and ISO/TR 4804 standards respectively for railways and automated cars. One of the main findings, through Markov modeling, is the improvement of the Mean Time to System Failure (MTTFsys) that for the railway safety-of-life applications can be significantly increased from about 521 h up to 5 x 105 h. These results can contribute to accelerating the adoption of GNSS positioning for automated land transportation, by exploiting the extensive experience brought by the aviation sector where GNSS was introduced 20 years ago.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    001229717100008

  • EID výsledku v databázi Scopus

    2-s2.0-85194022319