Parallel Computing Procedure for Dynamic Relaxation Method on GPU Using NVIDIAs CUDA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F15%3APU117959" target="_blank" >RIV/00216305:26110/15:PU117959 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Computing Procedure for Dynamic Relaxation Method on GPU Using NVIDIAs CUDA
Popis výsledku v původním jazyce
This paper introduces a procedure for parallel computing with the Dynamic Relaxation method (DR) on a Graphic Processing Unit (GPU). This method facilitates the consideration of a variety of nonlinearities in an easy and explicit manner. Because of the presence of inertial forces, a static problem leads to a transient dynamic problem where the Central Difference Method is used as a method for direct integration of equations of motion which arise from the Finite Element model. The natural characteristicof this explicit method is that the scheme can be easily parallelized. The assembly of a global stiffness matrix is not required. Due to slow convergence of this method, the high performance which GPUs provide is strongly suitable for this kind of computation. NVIDIAs CUDA is used for general-purpose computing on graphics processing units (GPGPU) for NVIDIa GPUs with CUDA capability.
Název v anglickém jazyce
Parallel Computing Procedure for Dynamic Relaxation Method on GPU Using NVIDIAs CUDA
Popis výsledku anglicky
This paper introduces a procedure for parallel computing with the Dynamic Relaxation method (DR) on a Graphic Processing Unit (GPU). This method facilitates the consideration of a variety of nonlinearities in an easy and explicit manner. Because of the presence of inertial forces, a static problem leads to a transient dynamic problem where the Central Difference Method is used as a method for direct integration of equations of motion which arise from the Finite Element model. The natural characteristicof this explicit method is that the scheme can be easily parallelized. The assembly of a global stiffness matrix is not required. Due to slow convergence of this method, the high performance which GPUs provide is strongly suitable for this kind of computation. NVIDIAs CUDA is used for general-purpose computing on graphics processing units (GPGPU) for NVIDIa GPUs with CUDA capability.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů