Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151068" target="_blank" >RIV/00216305:26110/24:PU151068 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/document/doi/10.1515/anona-2023-0120/pdf" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2023-0120/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2023-0120" target="_blank" >10.1515/anona-2023-0120</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point
Popis výsledku v původním jazyce
A singular nonlinear differential equation z(sigma) dw/dz = aw + zwf(z , w), where sigma > 1, is considered in a neighbourhood of the point z = 0 z=0 located either in the complex plane C if sigma is a natural number, in a Riemann surface of a rational function if sigma is a rational number, or in the Riemann surface of logarithmic function if sigma is an irrational number. It is assumed that w = w ( z ) w=wleft(z) , a is an element of C { 0 } a, and that the function f f is analytic in a neighbourhood of the origin in C x C . Considering sigma to be an integer, a rational, or an irrational number, for each of the above-mentioned cases, the existence is proved of analytic solutions w = w (z ) w=w(z) in a domain that is part of a neighbourhood of the point z = 0 z=0 in C or in the Riemann surface of either a rational or a logarithmic function. Within this domain, the property lim z -> 0 w (z) = 0 is proved and an asymptotic behaviour of w (z) s established. Several examples and figures illustrate the results derived. The blow-up phenomenon is discussed as well.
Název v anglickém jazyce
Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point
Popis výsledku anglicky
A singular nonlinear differential equation z(sigma) dw/dz = aw + zwf(z , w), where sigma > 1, is considered in a neighbourhood of the point z = 0 z=0 located either in the complex plane C if sigma is a natural number, in a Riemann surface of a rational function if sigma is a rational number, or in the Riemann surface of logarithmic function if sigma is an irrational number. It is assumed that w = w ( z ) w=wleft(z) , a is an element of C { 0 } a, and that the function f f is analytic in a neighbourhood of the origin in C x C . Considering sigma to be an integer, a rational, or an irrational number, for each of the above-mentioned cases, the existence is proved of analytic solutions w = w (z ) w=w(z) in a domain that is part of a neighbourhood of the point z = 0 z=0 in C or in the Riemann surface of either a rational or a logarithmic function. Within this domain, the property lim z -> 0 w (z) = 0 is proved and an asymptotic behaviour of w (z) s established. Several examples and figures illustrate the results derived. The blow-up phenomenon is discussed as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
2191-950X
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
44
Strana od-do
1-44
Kód UT WoS článku
001163610100001
EID výsledku v databázi Scopus
2-s2.0-85187275375