Stratified sample tiling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151087" target="_blank" >RIV/00216305:26110/24:PU151087 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0965997824000012" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997824000012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2024.103593" target="_blank" >10.1016/j.advengsoft.2024.103593</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stratified sample tiling
Popis výsledku v původním jazyce
The paper introduces a practical method for the construction of large-scale point sets for analysis of computer models. The constructed experimental design is useful for (probabilistic) integration, construction of approximation or a screening. The essence of the presented approach is the stratification of the design domain into an orthogonal grid of substrata and a subsequent tiling with tiles of points. If optimized, such tiles experience a major reduction of the number of degrees of freedom in the optimization process. That way, optimal or near-optimal point patterns can be feasibly identified and are further utilized for construction of larger point sets, thanks to the idea of self-similarity and structured space stratification The space-filling properties of the resulting point sets may be further enhanced by various "scrambling"strategies, which may remove the undesired sample collapsibility achieved via regular tiling. The performance of the constructed point sets is compared to Quasi Monte Carlo (QMC), Randomized Quasi Monte Carlo (RQMC) sequences, which are still today considered by engineers and even scientists as choices for variance reduction of numerical integration Further, the mentioned sampling strategies are compared in the terms of robustness when integrating a multivariate function with a localized feature. It is concluded that the proposed sampling approach reaches a superior performance in numerical integration and identification of function extremes as compared to sampling methods used by practicing researchers and engineers. Additionally, the reader is supplied with the open-access, ready-to-use implementation of the presented algorithm named SampleTiler.
Název v anglickém jazyce
Stratified sample tiling
Popis výsledku anglicky
The paper introduces a practical method for the construction of large-scale point sets for analysis of computer models. The constructed experimental design is useful for (probabilistic) integration, construction of approximation or a screening. The essence of the presented approach is the stratification of the design domain into an orthogonal grid of substrata and a subsequent tiling with tiles of points. If optimized, such tiles experience a major reduction of the number of degrees of freedom in the optimization process. That way, optimal or near-optimal point patterns can be feasibly identified and are further utilized for construction of larger point sets, thanks to the idea of self-similarity and structured space stratification The space-filling properties of the resulting point sets may be further enhanced by various "scrambling"strategies, which may remove the undesired sample collapsibility achieved via regular tiling. The performance of the constructed point sets is compared to Quasi Monte Carlo (QMC), Randomized Quasi Monte Carlo (RQMC) sequences, which are still today considered by engineers and even scientists as choices for variance reduction of numerical integration Further, the mentioned sampling strategies are compared in the terms of robustness when integrating a multivariate function with a localized feature. It is concluded that the proposed sampling approach reaches a superior performance in numerical integration and identification of function extremes as compared to sampling methods used by practicing researchers and engineers. Additionally, the reader is supplied with the open-access, ready-to-use implementation of the presented algorithm named SampleTiler.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-06684K" target="_blank" >GF22-06684K: Stochastická únava betonu řešená přístupy založenými na disipaci energie s ohledem na vzájemné působení časových a teplotních účinků</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN ENGINEERING SOFTWARE
ISSN
0965-9978
e-ISSN
1873-5339
Svazek periodika
189
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001164915200001
EID výsledku v databázi Scopus
2-s2.0-85182901308