Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stratified sample tiling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151087" target="_blank" >RIV/00216305:26110/24:PU151087 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0965997824000012" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997824000012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2024.103593" target="_blank" >10.1016/j.advengsoft.2024.103593</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stratified sample tiling

  • Popis výsledku v původním jazyce

    The paper introduces a practical method for the construction of large-scale point sets for analysis of computer models. The constructed experimental design is useful for (probabilistic) integration, construction of approximation or a screening. The essence of the presented approach is the stratification of the design domain into an orthogonal grid of substrata and a subsequent tiling with tiles of points. If optimized, such tiles experience a major reduction of the number of degrees of freedom in the optimization process. That way, optimal or near-optimal point patterns can be feasibly identified and are further utilized for construction of larger point sets, thanks to the idea of self-similarity and structured space stratification The space-filling properties of the resulting point sets may be further enhanced by various "scrambling"strategies, which may remove the undesired sample collapsibility achieved via regular tiling. The performance of the constructed point sets is compared to Quasi Monte Carlo (QMC), Randomized Quasi Monte Carlo (RQMC) sequences, which are still today considered by engineers and even scientists as choices for variance reduction of numerical integration Further, the mentioned sampling strategies are compared in the terms of robustness when integrating a multivariate function with a localized feature. It is concluded that the proposed sampling approach reaches a superior performance in numerical integration and identification of function extremes as compared to sampling methods used by practicing researchers and engineers. Additionally, the reader is supplied with the open-access, ready-to-use implementation of the presented algorithm named SampleTiler.

  • Název v anglickém jazyce

    Stratified sample tiling

  • Popis výsledku anglicky

    The paper introduces a practical method for the construction of large-scale point sets for analysis of computer models. The constructed experimental design is useful for (probabilistic) integration, construction of approximation or a screening. The essence of the presented approach is the stratification of the design domain into an orthogonal grid of substrata and a subsequent tiling with tiles of points. If optimized, such tiles experience a major reduction of the number of degrees of freedom in the optimization process. That way, optimal or near-optimal point patterns can be feasibly identified and are further utilized for construction of larger point sets, thanks to the idea of self-similarity and structured space stratification The space-filling properties of the resulting point sets may be further enhanced by various "scrambling"strategies, which may remove the undesired sample collapsibility achieved via regular tiling. The performance of the constructed point sets is compared to Quasi Monte Carlo (QMC), Randomized Quasi Monte Carlo (RQMC) sequences, which are still today considered by engineers and even scientists as choices for variance reduction of numerical integration Further, the mentioned sampling strategies are compared in the terms of robustness when integrating a multivariate function with a localized feature. It is concluded that the proposed sampling approach reaches a superior performance in numerical integration and identification of function extremes as compared to sampling methods used by practicing researchers and engineers. Additionally, the reader is supplied with the open-access, ready-to-use implementation of the presented algorithm named SampleTiler.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF22-06684K" target="_blank" >GF22-06684K: Stochastická únava betonu řešená přístupy založenými na disipaci energie s ohledem na vzájemné působení časových a teplotních účinků</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCES IN ENGINEERING SOFTWARE

  • ISSN

    0965-9978

  • e-ISSN

    1873-5339

  • Svazek periodika

    189

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    1-20

  • Kód UT WoS článku

    001164915200001

  • EID výsledku v databázi Scopus

    2-s2.0-85182901308