Explanation and Speedup Comparison of Advanced Path-planning Algorithms Presented on Two-dimensional Grid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147638" target="_blank" >RIV/00216305:26210/22:PU147638 - isvavai.cz</a>
Výsledek na webu
<a href="https://mendel-journal.org/index.php/mendel" target="_blank" >https://mendel-journal.org/index.php/mendel</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2022.2.097" target="_blank" >10.13164/mendel.2022.2.097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explanation and Speedup Comparison of Advanced Path-planning Algorithms Presented on Two-dimensional Grid
Popis výsledku v původním jazyce
Path planning or network route planning problems are an important issue in AI, robotics, or computer games. Appropriate implementation and knowledge of advanced and classical path-planning algorithms can be important for both autonomous navigation systems and computer games. In this paper, we compare advanced path planning algorithms implemented on a two-dimensional grid. Advanced path planning algorithms, including pseudocode, are introduced. The experiments were performed in the Python environment, thus with a significant performance margin over C++ or Rust implementations. The main focus is on the speedup of the algorithms compared to a baseline method, which was chosen to be the well-known Dijkstra’s algorithm. All experiments correspond to trajectories on a two-dimensional grid, with variously defined constraints. The motion from each node corresponds to a Moore neighborhood, i.e., it is possible in eight directions. In this paper, three well-known path planning algorithms are described and compared: the Dijkstra, A* and A* /w Bounding Box. And two advanced methods are included, namely Jump Point Search (JPS), incorporated with the Bounding Box variant (JPS+BB), and Simple Subgoal (SS). These advanced methods clearly show their advantage in the context of the speed up of solution time.
Název v anglickém jazyce
Explanation and Speedup Comparison of Advanced Path-planning Algorithms Presented on Two-dimensional Grid
Popis výsledku anglicky
Path planning or network route planning problems are an important issue in AI, robotics, or computer games. Appropriate implementation and knowledge of advanced and classical path-planning algorithms can be important for both autonomous navigation systems and computer games. In this paper, we compare advanced path planning algorithms implemented on a two-dimensional grid. Advanced path planning algorithms, including pseudocode, are introduced. The experiments were performed in the Python environment, thus with a significant performance margin over C++ or Rust implementations. The main focus is on the speedup of the algorithms compared to a baseline method, which was chosen to be the well-known Dijkstra’s algorithm. All experiments correspond to trajectories on a two-dimensional grid, with variously defined constraints. The motion from each node corresponds to a Moore neighborhood, i.e., it is possible in eight directions. In this paper, three well-known path planning algorithms are described and compared: the Dijkstra, A* and A* /w Bounding Box. And two advanced methods are included, namely Jump Point Search (JPS), incorporated with the Bounding Box variant (JPS+BB), and Simple Subgoal (SS). These advanced methods clearly show their advantage in the context of the speed up of solution time.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mendel Journal series
ISSN
1803-3814
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
97-107
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85145971181