Explanation of the mechanisms of unsteady gas flow through the turbocharger seal system, including thermal and structural interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148642" target="_blank" >RIV/00216305:26210/23:PU148642 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jppr.2023.05.003" target="_blank" >https://doi.org/10.1016/j.jppr.2023.05.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jppr.2023.05.003" target="_blank" >10.1016/j.jppr.2023.05.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explanation of the mechanisms of unsteady gas flow through the turbocharger seal system, including thermal and structural interactions
Popis výsledku v původním jazyce
Gas flow in the seal system can be expected during the operation of a turbocharger and is associated with negative effects on the quality of the lubricant or turbocharger efficiency. Gas flow also affects particulate matter production due to lubricant entrainment in the compressor or turbine. The prediction of gas flow rates depends on many design parameters and the operating conditions of the turbocharger, but sufficiently accurate descriptions of the gas flow mechanisms and their quantification depending on the operating conditions have not yet been presented. The proposed computational approach simultaneously solves the gas dynamics in the seal system, the heat transfer in the turbocharger rotor-bearing system and the dynamics of the seal rings and rotor, including the bearings. The computational model for the turbocharger of a heavy-duty vehicle engine is experimentally validated. Two mechanisms have major influences on gas mass flow: the gas flow through the thin gap between the moving ring and groove and the flow through the ring gap. The results show that the importance of these mechanisms depends on several geometrical dimensions of the seal system and the operating conditions of the turbocharger, with a strong connection to the rotor dynamics and thermal load of the impellers. Influences involving rotor movement or rotor thermal conditions are crucial, and their non-inclusion limits the ability to correctly predict gas mass flow.
Název v anglickém jazyce
Explanation of the mechanisms of unsteady gas flow through the turbocharger seal system, including thermal and structural interactions
Popis výsledku anglicky
Gas flow in the seal system can be expected during the operation of a turbocharger and is associated with negative effects on the quality of the lubricant or turbocharger efficiency. Gas flow also affects particulate matter production due to lubricant entrainment in the compressor or turbine. The prediction of gas flow rates depends on many design parameters and the operating conditions of the turbocharger, but sufficiently accurate descriptions of the gas flow mechanisms and their quantification depending on the operating conditions have not yet been presented. The proposed computational approach simultaneously solves the gas dynamics in the seal system, the heat transfer in the turbocharger rotor-bearing system and the dynamics of the seal rings and rotor, including the bearings. The computational model for the turbocharger of a heavy-duty vehicle engine is experimentally validated. Two mechanisms have major influences on gas mass flow: the gas flow through the thin gap between the moving ring and groove and the flow through the ring gap. The results show that the importance of these mechanisms depends on several geometrical dimensions of the seal system and the operating conditions of the turbocharger, with a strong connection to the rotor dynamics and thermal load of the impellers. Influences involving rotor movement or rotor thermal conditions are crucial, and their non-inclusion limits the ability to correctly predict gas mass flow.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Propulsion and Power Research
ISSN
2212-540X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
19
Strana od-do
180-198
Kód UT WoS článku
001037344800001
EID výsledku v databázi Scopus
2-s2.0-85162227726