On iterated dualizations of topological structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F02%3APU30316" target="_blank" >RIV/00216305:26220/02:PU30316 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On iterated dualizations of topological structures
Popis výsledku v původním jazyce
A topology $tau^d$ is said to be dual with respect to the topology $tau$ on a set $X$ if $tau^d$ has a closed base consisting of the compact saturated sets in the topological space $(X,tau)$. In the well-known book{it Open Problems in Topology}, edited by J. van Mill and G. M. Reed, there was stated the problem no. 540 of J. D. Lawson and M. Mislove: {it Does the process of iterating duals of a topology terminate by two topologies, dual to each other (1990, cite{LM})?} As a matter of fact, for $T_1$ spaces, the problem was solved by G. E. Strecker, J. de Groot and E. Wattel (1966, cite{GSW}) a long time before it was formulated by Lawson and Mislove, since in $T_1$ spaces, the dual operator studied by Lawson and Mislove coincides with another dual, introduced by de Groot, Strecker and Wattel more than 30 years ago. In 2000 the problem was partially solved by B. Burdick, who proved that for some topologies on certain hyperspaces, during the iterated dualization process
Název v anglickém jazyce
On iterated dualizations of topological structures
Popis výsledku anglicky
A topology $tau^d$ is said to be dual with respect to the topology $tau$ on a set $X$ if $tau^d$ has a closed base consisting of the compact saturated sets in the topological space $(X,tau)$. In the well-known book{it Open Problems in Topology}, edited by J. van Mill and G. M. Reed, there was stated the problem no. 540 of J. D. Lawson and M. Mislove: {it Does the process of iterating duals of a topology terminate by two topologies, dual to each other (1990, cite{LM})?} As a matter of fact, for $T_1$ spaces, the problem was solved by G. E. Strecker, J. de Groot and E. Wattel (1966, cite{GSW}) a long time before it was formulated by Lawson and Mislove, since in $T_1$ spaces, the dual operator studied by Lawson and Mislove coincides with another dual, introduced by de Groot, Strecker and Wattel more than 30 years ago. In 2000 the problem was partially solved by B. Burdick, who proved that for some topologies on certain hyperspaces, during the iterated dualization process
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F00%2F1466" target="_blank" >GA201/00/1466: Spojité a teoreticko-množinové metody v topologických a algebraických strukturách</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2002
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Abstract of the International Conference on Topology and Its Applications - Topology in Matsue
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
42-43
Název nakladatele
Shimane University in Matsue Osaka university
Místo vydání
Matsue, Japonsko
Místo konání akce
Matsue
Datum konání akce
24. 6. 2002
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—