Image Processing Based Automatic Identification of Freshness in Fish Gill Tissues
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU144173" target="_blank" >RIV/00216305:26220/18:PU144173 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8748778" target="_blank" >https://ieeexplore.ieee.org/document/8748778</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICACCCN.2018.8748778" target="_blank" >10.1109/ICACCCN.2018.8748778</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Processing Based Automatic Identification of Freshness in Fish Gill Tissues
Popis výsledku v původním jazyce
Fish is one of the healthiest foods on the earth. The quality of the fish gets changed by the process involved in preserving and handling from buyer to seller. The degradation in the fish can be detected on the most vulnerable focal tissue like gill. This focal tissue has been automatically segmented from whole fish using image processing based technique. The statistical features were extracted from the segmented gill tissues. This paper presents a nondestructive image processing based technique for extracting the properties of stored fish gill tissues using Wavelet Transform. The imperative selection of the methodology makes the algorithm computationally fast, efficient, and automatic. The strategic selection of the discriminatory features from the fish image makes this a novel approach which is accurate for the detection of freshness in the sample under test. Experimental results show discriminatory variation pattern of statistical wavelet feature versus freshness of the fish. This prominent monotonic dissimilarity in the parameters provides a strategic framework for the identification of freshness in stored fish gill tissues. The computation speed is fast which makes this method efficient for real time application.
Název v anglickém jazyce
Image Processing Based Automatic Identification of Freshness in Fish Gill Tissues
Popis výsledku anglicky
Fish is one of the healthiest foods on the earth. The quality of the fish gets changed by the process involved in preserving and handling from buyer to seller. The degradation in the fish can be detected on the most vulnerable focal tissue like gill. This focal tissue has been automatically segmented from whole fish using image processing based technique. The statistical features were extracted from the segmented gill tissues. This paper presents a nondestructive image processing based technique for extracting the properties of stored fish gill tissues using Wavelet Transform. The imperative selection of the methodology makes the algorithm computationally fast, efficient, and automatic. The strategic selection of the discriminatory features from the fish image makes this a novel approach which is accurate for the detection of freshness in the sample under test. Experimental results show discriminatory variation pattern of statistical wavelet feature versus freshness of the fish. This prominent monotonic dissimilarity in the parameters provides a strategic framework for the identification of freshness in stored fish gill tissues. The computation speed is fast which makes this method efficient for real time application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2018
ISBN
978-1-5386-4119-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1011-1015
Název nakladatele
IEEE
Místo vydání
Greater Noida, Indie
Místo konání akce
Greater Noida
Datum konání akce
12. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—