Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advanced Parametrization of Graphomotor Difficulties in School-Aged Children

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136716" target="_blank" >RIV/00216305:26220/20:PU136716 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14210/20:00114245

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9119411/" target="_blank" >https://ieeexplore.ieee.org/document/9119411/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.3003214" target="_blank" >10.1109/ACCESS.2020.3003214</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advanced Parametrization of Graphomotor Difficulties in School-Aged Children

  • Popis výsledku v původním jazyce

    School-aged children spend 31–60% of their time at school performing handwriting, which is a complex perceptual-motor skill composed of a coordinated combination of fine graphomotor movements. As up to 30% of them experience graphomotor difficulties (GD), timely diagnosis of these difficulties and therapeutic intervention are of great importance. At present, an objective, computerized decision support system for the identification and assessment of GD in school-aged children is still missing. In this study, we propose three novel advanced handwriting parametrization techniques based on modulation spectra, fractional order derivatives, and tunable Q-factor wavelet transform to improve the identification of GD using online handwriting. For this purpose, we analyzed signals acquired from 7 basic graphomotor tasks performed by 53 children attending 3rd and 4th grade at several primary schools around the Czech Republic. Combining the newly proposed features with the conventionally used ones, we were able to identify GD with 84% accuracy. In this study, we showed that using advanced parametrization of basic graphomotor movements can be potentially used to improve our capabilities of quantifying problems with the development of legible, fast-paced handwriting, and help with the early diagnosis of handwriting difficulties frequently manifested in developmental dysgraphia.

  • Název v anglickém jazyce

    Advanced Parametrization of Graphomotor Difficulties in School-Aged Children

  • Popis výsledku anglicky

    School-aged children spend 31–60% of their time at school performing handwriting, which is a complex perceptual-motor skill composed of a coordinated combination of fine graphomotor movements. As up to 30% of them experience graphomotor difficulties (GD), timely diagnosis of these difficulties and therapeutic intervention are of great importance. At present, an objective, computerized decision support system for the identification and assessment of GD in school-aged children is still missing. In this study, we propose three novel advanced handwriting parametrization techniques based on modulation spectra, fractional order derivatives, and tunable Q-factor wavelet transform to improve the identification of GD using online handwriting. For this purpose, we analyzed signals acquired from 7 basic graphomotor tasks performed by 53 children attending 3rd and 4th grade at several primary schools around the Czech Republic. Combining the newly proposed features with the conventionally used ones, we were able to identify GD with 84% accuracy. In this study, we showed that using advanced parametrization of basic graphomotor movements can be potentially used to improve our capabilities of quantifying problems with the development of legible, fast-paced handwriting, and help with the early diagnosis of handwriting difficulties frequently manifested in developmental dysgraphia.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50301 - Education, general; including training, pedagogy, didactics [and education systems]

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-16835S" target="_blank" >GA18-16835S: Výzkum pokročilých metod diagnózy a hodnocení vývojové dysgrafie založených na kvantitativní analýze online písma a kresby</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    112883-112897

  • Kód UT WoS článku

    000546414500049

  • EID výsledku v databázi Scopus

    2-s2.0-85087649325