Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU154754" target="_blank" >RIV/00216305:26220/24:PU154754 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081740:_____/25:00602015
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12559-024-10360-7" target="_blank" >https://link.springer.com/article/10.1007/s12559-024-10360-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12559-024-10360-7" target="_blank" >10.1007/s12559-024-10360-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives
Popis výsledku v původním jazyce
Children who do not sufficiently develop graphomotor skills essential for handwriting often develop graphomotor disabilities (GD), impacting the self-esteem and academic performance of the individual. Current examination methods of GD consist of scales and questionaries, which lack objectivity, rely on the perceptual abilities of the examiner, and may lead to inadequately targeted remediation. Nowadays, one way to address the factor of subjectivity is to incorporate supportive machine learning (ML) based assessment. However, even with the increasing popularity of decision-support systems facilitating the diagnosis and assessment of GD, this field still lacks an understanding of deficient kinematics concerning the direction of pen movement. This study aims to explore the impact of movement direction on the manifestations of graphomotor difficulties in school-aged. We introduced a new fractional-order derivative-based approach enabling quantification of kinematic aspects of handwriting concerning the direction of movement using polar plot representation. We validated the novel features in a barrage of machine learning scenarios, testing various training methods based on extreme gradient boosting trees (XGBboost), Bayesian, and random search hyperparameter tuning methods. Results show that our novel features outperformed the baseline and provided a balanced accuracy of 87 % (sensitivity = 82 %, specificity = 92 %), performing binary classification (children with/without graphomotor difficulties). The final model peaked when using only 43 out of 250 novel features, showing that XGBoost can benefit from feature selection methods. Proposed features provide additional information to an automated classifier with the potential of human interpretability thanks to the possibility of easy visualization using polar plots.
Název v anglickém jazyce
Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives
Popis výsledku anglicky
Children who do not sufficiently develop graphomotor skills essential for handwriting often develop graphomotor disabilities (GD), impacting the self-esteem and academic performance of the individual. Current examination methods of GD consist of scales and questionaries, which lack objectivity, rely on the perceptual abilities of the examiner, and may lead to inadequately targeted remediation. Nowadays, one way to address the factor of subjectivity is to incorporate supportive machine learning (ML) based assessment. However, even with the increasing popularity of decision-support systems facilitating the diagnosis and assessment of GD, this field still lacks an understanding of deficient kinematics concerning the direction of pen movement. This study aims to explore the impact of movement direction on the manifestations of graphomotor difficulties in school-aged. We introduced a new fractional-order derivative-based approach enabling quantification of kinematic aspects of handwriting concerning the direction of movement using polar plot representation. We validated the novel features in a barrage of machine learning scenarios, testing various training methods based on extreme gradient boosting trees (XGBboost), Bayesian, and random search hyperparameter tuning methods. Results show that our novel features outperformed the baseline and provided a balanced accuracy of 87 % (sensitivity = 82 %, specificity = 92 %), performing binary classification (children with/without graphomotor difficulties). The final model peaked when using only 43 out of 250 novel features, showing that XGBoost can benefit from feature selection methods. Proposed features provide additional information to an automated classifier with the potential of human interpretability thanks to the possibility of easy visualization using polar plots.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cognitive Computation
ISSN
1866-9956
e-ISSN
1866-9964
Svazek periodika
13
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
„“-„“
Kód UT WoS článku
001365485300004
EID výsledku v databázi Scopus
—