Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU154754" target="_blank" >RIV/00216305:26220/24:PU154754 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081740:_____/25:00602015

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s12559-024-10360-7" target="_blank" >https://link.springer.com/article/10.1007/s12559-024-10360-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12559-024-10360-7" target="_blank" >10.1007/s12559-024-10360-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives

  • Popis výsledku v původním jazyce

    Children who do not sufficiently develop graphomotor skills essential for handwriting often develop graphomotor disabilities (GD), impacting the self-esteem and academic performance of the individual. Current examination methods of GD consist of scales and questionaries, which lack objectivity, rely on the perceptual abilities of the examiner, and may lead to inadequately targeted remediation. Nowadays, one way to address the factor of subjectivity is to incorporate supportive machine learning (ML) based assessment. However, even with the increasing popularity of decision-support systems facilitating the diagnosis and assessment of GD, this field still lacks an understanding of deficient kinematics concerning the direction of pen movement. This study aims to explore the impact of movement direction on the manifestations of graphomotor difficulties in school-aged. We introduced a new fractional-order derivative-based approach enabling quantification of kinematic aspects of handwriting concerning the direction of movement using polar plot representation. We validated the novel features in a barrage of machine learning scenarios, testing various training methods based on extreme gradient boosting trees (XGBboost), Bayesian, and random search hyperparameter tuning methods. Results show that our novel features outperformed the baseline and provided a balanced accuracy of 87 % (sensitivity = 82 %, specificity = 92 %), performing binary classification (children with/without graphomotor difficulties). The final model peaked when using only 43 out of 250 novel features, showing that XGBoost can benefit from feature selection methods. Proposed features provide additional information to an automated classifier with the potential of human interpretability thanks to the possibility of easy visualization using polar plots.

  • Název v anglickém jazyce

    Computer-Aided Diagnosis of Graphomotor Difficulties Utilizing Direction-Based Fractional Order Derivatives

  • Popis výsledku anglicky

    Children who do not sufficiently develop graphomotor skills essential for handwriting often develop graphomotor disabilities (GD), impacting the self-esteem and academic performance of the individual. Current examination methods of GD consist of scales and questionaries, which lack objectivity, rely on the perceptual abilities of the examiner, and may lead to inadequately targeted remediation. Nowadays, one way to address the factor of subjectivity is to incorporate supportive machine learning (ML) based assessment. However, even with the increasing popularity of decision-support systems facilitating the diagnosis and assessment of GD, this field still lacks an understanding of deficient kinematics concerning the direction of pen movement. This study aims to explore the impact of movement direction on the manifestations of graphomotor difficulties in school-aged. We introduced a new fractional-order derivative-based approach enabling quantification of kinematic aspects of handwriting concerning the direction of movement using polar plot representation. We validated the novel features in a barrage of machine learning scenarios, testing various training methods based on extreme gradient boosting trees (XGBboost), Bayesian, and random search hyperparameter tuning methods. Results show that our novel features outperformed the baseline and provided a balanced accuracy of 87 % (sensitivity = 82 %, specificity = 92 %), performing binary classification (children with/without graphomotor difficulties). The final model peaked when using only 43 out of 250 novel features, showing that XGBoost can benefit from feature selection methods. Proposed features provide additional information to an automated classifier with the potential of human interpretability thanks to the possibility of easy visualization using polar plots.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Cognitive Computation

  • ISSN

    1866-9956

  • e-ISSN

    1866-9964

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001365485300004

  • EID výsledku v databázi Scopus