Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Frame Labeled Faces Database: Towards Face Super-Resolution from Realistic Video Sequences

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137491" target="_blank" >RIV/00216305:26220/20:PU137491 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/10/20/7213" target="_blank" >https://www.mdpi.com/2076-3417/10/20/7213</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app10207213" target="_blank" >10.3390/app10207213</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Frame Labeled Faces Database: Towards Face Super-Resolution from Realistic Video Sequences

  • Popis výsledku v původním jazyce

    Forensically trained facial reviewers are still considered as one of the most accurate approaches for person identification from video records. The human brain can utilize information, not just from a single image, but also from a sequence of images (i.e., videos), and even in the case of low-quality records or a long distance from a camera, it can accurately identify a given person. Unfortunately, in many cases, a single still image is needed. An example of such a case is a police search that is about to be announced in newspapers. This paper introduces a face database obtained from real environment counting in 17,426 sequences of images. The dataset includes persons of various races and ages and also different environments, different lighting conditions or camera device types. This paper also introduces a new multi-frame face super-resolution method and compares this method with the state-of-the-art single-frame and multi-frame super-resolution methods. We prove that the proposed method increases the quality of face images, even in cases of low-resolution low-quality input images, and provides better results than single-frame approaches that are still considered the best in this area. Quality of face images was evaluated using several objective mathematical methods, and also subjective ones, by several volunteers. The source code and the dataset were released and the experiment is fully reproducible.

  • Název v anglickém jazyce

    Multi-Frame Labeled Faces Database: Towards Face Super-Resolution from Realistic Video Sequences

  • Popis výsledku anglicky

    Forensically trained facial reviewers are still considered as one of the most accurate approaches for person identification from video records. The human brain can utilize information, not just from a single image, but also from a sequence of images (i.e., videos), and even in the case of low-quality records or a long distance from a camera, it can accurately identify a given person. Unfortunately, in many cases, a single still image is needed. An example of such a case is a police search that is about to be announced in newspapers. This paper introduces a face database obtained from real environment counting in 17,426 sequences of images. The dataset includes persons of various races and ages and also different environments, different lighting conditions or camera device types. This paper also introduces a new multi-frame face super-resolution method and compares this method with the state-of-the-art single-frame and multi-frame super-resolution methods. We prove that the proposed method increases the quality of face images, even in cases of low-resolution low-quality input images, and provides better results than single-frame approaches that are still considered the best in this area. Quality of face images was evaluated using several objective mathematical methods, and also subjective ones, by several volunteers. The source code and the dataset were released and the experiment is fully reproducible.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences - Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    27

  • Strana od-do

    1-27

  • Kód UT WoS článku

    000585125700001

  • EID výsledku v databázi Scopus

    2-s2.0-85092787115