Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Network Supervision via Protocol Identification in the Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144434" target="_blank" >RIV/00216305:26220/22:PU144434 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Network Supervision via Protocol Identification in the Network

  • Popis výsledku v původním jazyce

    This paper is focused on a comparison of ML (Machine Learning) and DNN (Deep Neural Network) techniques in protocol recognition to support network supervision for further proper handling, e.g., detection of a security incident. The DNN approach uses 11 layers and the ML approach is consisting of 28 mutually different predictive models. Both techniques were performed/compared on a freely accessible dataset containing browsing pcap files for further comparison, e.g., with other approaches. The predictive multiclass models were trained (fitted) to be capable of detecting five network protocols. Both approaches were compared by the achieved accuracy (based on testing and validating data), learning time, and predicting the time point of view. Using the ML approach, we were able to recognize the protocol with an accuracy of 1 and using DNN with an accuracy of 0.97.

  • Název v anglickém jazyce

    Network Supervision via Protocol Identification in the Network

  • Popis výsledku anglicky

    This paper is focused on a comparison of ML (Machine Learning) and DNN (Deep Neural Network) techniques in protocol recognition to support network supervision for further proper handling, e.g., detection of a security incident. The DNN approach uses 11 layers and the ML approach is consisting of 28 mutually different predictive models. Both techniques were performed/compared on a freely accessible dataset containing browsing pcap files for further comparison, e.g., with other approaches. The predictive multiclass models were trained (fitted) to be capable of detecting five network protocols. Both approaches were compared by the achieved accuracy (based on testing and validating data), learning time, and predicting the time point of view. Using the ML approach, we were able to recognize the protocol with an accuracy of 1 and using DNN with an accuracy of 0.97.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TK02030013" target="_blank" >TK02030013: Kyber-fyzikální dvojče městské infrastruktury zítřka</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů