Network Supervision via Protocol Identification in the Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144434" target="_blank" >RIV/00216305:26220/22:PU144434 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Network Supervision via Protocol Identification in the Network
Popis výsledku v původním jazyce
This paper is focused on a comparison of ML (Machine Learning) and DNN (Deep Neural Network) techniques in protocol recognition to support network supervision for further proper handling, e.g., detection of a security incident. The DNN approach uses 11 layers and the ML approach is consisting of 28 mutually different predictive models. Both techniques were performed/compared on a freely accessible dataset containing browsing pcap files for further comparison, e.g., with other approaches. The predictive multiclass models were trained (fitted) to be capable of detecting five network protocols. Both approaches were compared by the achieved accuracy (based on testing and validating data), learning time, and predicting the time point of view. Using the ML approach, we were able to recognize the protocol with an accuracy of 1 and using DNN with an accuracy of 0.97.
Název v anglickém jazyce
Network Supervision via Protocol Identification in the Network
Popis výsledku anglicky
This paper is focused on a comparison of ML (Machine Learning) and DNN (Deep Neural Network) techniques in protocol recognition to support network supervision for further proper handling, e.g., detection of a security incident. The DNN approach uses 11 layers and the ML approach is consisting of 28 mutually different predictive models. Both techniques were performed/compared on a freely accessible dataset containing browsing pcap files for further comparison, e.g., with other approaches. The predictive multiclass models were trained (fitted) to be capable of detecting five network protocols. Both approaches were compared by the achieved accuracy (based on testing and validating data), learning time, and predicting the time point of view. Using the ML approach, we were able to recognize the protocol with an accuracy of 1 and using DNN with an accuracy of 0.97.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TK02030013" target="_blank" >TK02030013: Kyber-fyzikální dvojče městské infrastruktury zítřka</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů