A simple ANN-MLP model for estimating 60-GHz PDP inside public and private vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148534" target="_blank" >RIV/00216305:26220/23:PU148534 - isvavai.cz</a>
Výsledek na webu
<a href="https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-023-02257-0" target="_blank" >https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-023-02257-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13638-023-02257-0" target="_blank" >10.1186/s13638-023-02257-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A simple ANN-MLP model for estimating 60-GHz PDP inside public and private vehicles
Popis výsledku v původním jazyce
Radio wave propagation in an intra-vehicular (IV) environment is markedly different from other well-studied indoor scenarios, such as an office or a factory floor. While millimetre wave (mmWave)-based intra-vehicular communications promise large bandwidth and can achieve ultra-high data rates with lower latency, exploiting the advantages of mmWave communications largely relies on adequately characterising the propagation channel. Channel characterisation is most accurately done through an extensive channel sounding, but due to hardware and environmental constraints, it is impractical to test channel conditions for all possible transmitter and receiver locations. Artificial neural network (ANN)-based channel sounding can overcome this impediment by learning and estimating the channel parameters from the channel environment. We estimate the power delay profile in intra-vehicular public and private vehicle scenarios with a high accuracy using a simple feedforward multi-layer perception-based ANN model. Such artificially generated models can help extrapolate other relevant scenarios for which measurement data are unavailable. The proposed model efficiently matches the taped delay line samples obtained from real-world data, as shown by goodness-of-fit parameters and confusion matrices.
Název v anglickém jazyce
A simple ANN-MLP model for estimating 60-GHz PDP inside public and private vehicles
Popis výsledku anglicky
Radio wave propagation in an intra-vehicular (IV) environment is markedly different from other well-studied indoor scenarios, such as an office or a factory floor. While millimetre wave (mmWave)-based intra-vehicular communications promise large bandwidth and can achieve ultra-high data rates with lower latency, exploiting the advantages of mmWave communications largely relies on adequately characterising the propagation channel. Channel characterisation is most accurately done through an extensive channel sounding, but due to hardware and environmental constraints, it is impractical to test channel conditions for all possible transmitter and receiver locations. Artificial neural network (ANN)-based channel sounding can overcome this impediment by learning and estimating the channel parameters from the channel environment. We estimate the power delay profile in intra-vehicular public and private vehicle scenarios with a high accuracy using a simple feedforward multi-layer perception-based ANN model. Such artificially generated models can help extrapolate other relevant scenarios for which measurement data are unavailable. The proposed model efficiently matches the taped delay line samples obtained from real-world data, as shown by goodness-of-fit parameters and confusion matrices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GF23-04304L" target="_blank" >GF23-04304L: Vícepásmová predikce šíření milimetrových vln pro dynamické a statické scénáře v členitých časově proměnných prostředích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EURASIP Journal on Wireless Communications and Networking
ISSN
1687-1472
e-ISSN
1687-1499
Svazek periodika
2023
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
001002976900001
EID výsledku v databázi Scopus
2-s2.0-85163081070