Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mining Association Rules from Relational Data - Average Distance Based Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F03%3APU42633" target="_blank" >RIV/00216305:26230/03:PU42633 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mining Association Rules from Relational Data - Average Distance Based Method

  • Popis výsledku v původním jazyce

    The paper describes a new method for association rule discovery in relational databases, which contain both quantitative and categorical attributes. Most of the methods developed in the past are based on initial equi-depth discretization of quantitativeattributes. These approaches bring the loss of information. Distance-based methods are another kind of methods. They try to respect the semantics of data. The basic idea of the new method is to separate processing of categorical and quantitative attributes. The first step finds frequent itemsets containing only values of categorical attributes and then quantitative attributes are processed one by one. Discretization of values during quantitative attributes processing is distance-based. A new measure called average distance is introduced for these purposes. The paper describes the method and results of several experiments on real world data.

  • Název v anglickém jazyce

    Mining Association Rules from Relational Data - Average Distance Based Method

  • Popis výsledku anglicky

    The paper describes a new method for association rule discovery in relational databases, which contain both quantitative and categorical attributes. Most of the methods developed in the past are based on initial equi-depth discretization of quantitativeattributes. These approaches bring the loss of information. Distance-based methods are another kind of methods. They try to respect the semantics of data. The basic idea of the new method is to separate processing of categorical and quantitative attributes. The first step finds frequent itemsets containing only values of categorical attributes and then quantitative attributes are processed one by one. Discretization of values during quantitative attributes processing is distance-based. A new measure called average distance is introduced for these purposes. The paper describes the method and results of several experiments on real world data.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju<br>N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science (IF 0,513)

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2003

  • Číslo periodika v rámci svazku

    2888

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus