Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Study of Large Data Resources for Multilingual Training and System Porting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121609" target="_blank" >RIV/00216305:26230/16:PU121609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S1877050916300382" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1877050916300382</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.procs.2016.04.024" target="_blank" >10.1016/j.procs.2016.04.024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Study of Large Data Resources for Multilingual Training and System Porting

  • Popis výsledku v původním jazyce

    This study investigates the behavior of a feature extraction neural network model trained on a large amount of single language data ("source language") on a set of under-resourced target languages. The coverage of the source language acoustic space was changed in two ways: (1) by changing the amount of training data and (2) by altering the level of detail of acoustic units (by changing the triphone clustering). We observe the effect of these changes on the performance on target language in two scenarios: (1) the source-language NNs were used directly, (2) NNs were first ported to target language. The results show that increasing coverage as well as level of detail on the source language improves the target language system performance in both scenarios. For the first one, both source language characteristic have about the same effect. For the second scenario, the amount of data in source language is more important than the level of detail. The possibility to include large data into multilingual training set was also investigated. Our experiments point out possible risk of over-weighting the NNs towards the source language with large data. This degrades the performance on part of the target languages, compared to the setting where the amounts of data per language are balanced.

  • Název v anglickém jazyce

    Study of Large Data Resources for Multilingual Training and System Porting

  • Popis výsledku anglicky

    This study investigates the behavior of a feature extraction neural network model trained on a large amount of single language data ("source language") on a set of under-resourced target languages. The coverage of the source language acoustic space was changed in two ways: (1) by changing the amount of training data and (2) by altering the level of detail of acoustic units (by changing the triphone clustering). We observe the effect of these changes on the performance on target language in two scenarios: (1) the source-language NNs were used directly, (2) NNs were first ported to target language. The results show that increasing coverage as well as level of detail on the source language improves the target language system performance in both scenarios. For the first one, both source language characteristic have about the same effect. For the second scenario, the amount of data in source language is more important than the level of detail. The possibility to include large data into multilingual training set was also investigated. Our experiments point out possible risk of over-weighting the NNs towards the source language with large data. This degrades the performance on part of the target languages, compared to the setting where the amounts of data per language are balanced.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TA04011311" target="_blank" >TA04011311: Meeting assistant (MINT)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Procedia Computer Science

  • ISBN

  • ISSN

    1877-0509

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    15-22

  • Název nakladatele

    Elsevier Science

  • Místo vydání

    Yogyakarta

  • Místo konání akce

    Yogyakarta

  • Datum konání akce

    7. 5. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000387446500002