Automated Search-Based Functional Approximation for Digital Circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU130707" target="_blank" >RIV/00216305:26230/19:PU130707 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11679/" target="_blank" >https://www.fit.vut.cz/research/publication/11679/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99322-5_9" target="_blank" >10.1007/978-3-319-99322-5_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Search-Based Functional Approximation for Digital Circuits
Popis výsledku v původním jazyce
The problem of developing an approximate implementation of a given combinational circuit can be formulated as a multi-objective design problem and solved by means of a search algorithm. This approach usually provides many solutions showing high-quality tradeoffs between key design objectives; however, it is very computationally expensive. This chapter presents a general-purpose method based on genetic programming for an automated functional approximation of combinational circuits at the gate and register-transfer levels. It surveys relevant error metrics and circuit parameters that are typically optimized by genetic programming. A special attention is given to the techniques capable of providing formal guarantees in terms of error bounds and accelerating the search process. Case studies dealing with approximate implementations of arithmetic circuits and image operators are presented to highlight the quality of results obtained by the search-based functional approximation in completely different application domains.
Název v anglickém jazyce
Automated Search-Based Functional Approximation for Digital Circuits
Popis výsledku anglicky
The problem of developing an approximate implementation of a given combinational circuit can be formulated as a multi-objective design problem and solved by means of a search algorithm. This approach usually provides many solutions showing high-quality tradeoffs between key design objectives; however, it is very computationally expensive. This chapter presents a general-purpose method based on genetic programming for an automated functional approximation of combinational circuits at the gate and register-transfer levels. It surveys relevant error metrics and circuit parameters that are typically optimized by genetic programming. A special attention is given to the techniques capable of providing formal guarantees in terms of error bounds and accelerating the search process. Case studies dealing with approximate implementations of arithmetic circuits and image operators are presented to highlight the quality of results obtained by the search-based functional approximation in completely different application domains.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-17538S" target="_blank" >GA16-17538S: Přibližná ekvivalence pro aproximativní počítání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Approximate Circuits - Methodologies and CAD
ISBN
978-3-319-99322-5
Počet stran výsledku
29
Strana od-do
175-203
Počet stran knihy
463
Název nakladatele
Springer International Publishing
Místo vydání
Heidelberg
Kód UT WoS kapitoly
—