Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134188" target="_blank" >RIV/00216305:26230/19:PU134188 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.dega-akustik.de/publikationen/online-proceedings/" target="_blank" >https://www.dega-akustik.de/publikationen/online-proceedings/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources

  • Popis výsledku v původním jazyce

    Classically, automatic speech recognition (ASR) models are decomposed into acoustic models and language models (LM). LMs usually exploit the linguistic structure on a purely textual level and usually contribute strongly to an ASR systems performance. LMs are estimated on large amounts of textual data covering the target domain. However, most utterances cover more specic topics, e.g. in uencing the vocabulary used. Therefore, it's desirable to have the LM adjusted to an utterance's topic. Previous work achieves this by crawling extra data from the web or by using signicant amounts of previous speech data to train topic-specic LM on. We propose a way of adapting the LM directly using the target utterance to be recognized. The corresponding adaptation needs to be done in an unsupervised or automatically supervised way based on the speech input. To deal with corresponding errors robustly, we employ topic encodings from the recently proposed Subspace Multinomial Model. This model also avoids any need of explicit topic labelling during training or recognition, making the proposed method straight-forward to use. We demonstrate the performance of the method on the Librispeech corpus, which consists of read ction books, and we discuss it's behaviour qualitatively.

  • Název v anglickém jazyce

    Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources

  • Popis výsledku anglicky

    Classically, automatic speech recognition (ASR) models are decomposed into acoustic models and language models (LM). LMs usually exploit the linguistic structure on a purely textual level and usually contribute strongly to an ASR systems performance. LMs are estimated on large amounts of textual data covering the target domain. However, most utterances cover more specic topics, e.g. in uencing the vocabulary used. Therefore, it's desirable to have the LM adjusted to an utterance's topic. Previous work achieves this by crawling extra data from the web or by using signicant amounts of previous speech data to train topic-specic LM on. We propose a way of adapting the LM directly using the target utterance to be recognized. The corresponding adaptation needs to be done in an unsupervised or automatically supervised way based on the speech input. To deal with corresponding errors robustly, we employ topic encodings from the recently proposed Subspace Multinomial Model. This model also avoids any need of explicit topic labelling during training or recognition, making the proposed method straight-forward to use. We demonstrate the performance of the method on the Librispeech corpus, which consists of read ction books, and we discuss it's behaviour qualitatively.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_027%2F0008371" target="_blank" >EF16_027/0008371: Mezinárodní mobilita výzkumníků Vysokého učení technického v Brně</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of DAGA 2019

  • ISBN

    978-3-939296-14-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    954-957

  • Název nakladatele

    DEGA Head office, Deutsche Gesellschaft für Akustik

  • Místo vydání

    Rostock

  • Místo konání akce

    Rostock

  • Datum konání akce

    18. 3. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku