Analysis of Vehicle Trajectories for Determining Cross-Sectional Load Density Based on Computer Vision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134957" target="_blank" >RIV/00216305:26230/19:PU134957 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8917374" target="_blank" >https://ieeexplore.ieee.org/document/8917374</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ITSC.2019.8917374" target="_blank" >10.1109/ITSC.2019.8917374</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Vehicle Trajectories for Determining Cross-Sectional Load Density Based on Computer Vision
Popis výsledku v původním jazyce
The goal of this work was to analyze the behavior of vehicles on third-grade roads with and without horizontal lane markings with small curvature (R <= 200m). The roads are not frequented by many vehicles, and therefore, a general short-term study would not be able to provide enough data. We used recording devices for long-term (weeks) recording of the traffic and designed a system for analyzing the trajectories of the vehicles employing computer vision. We collected a dataset at 6 distinct locations, containing 1 010 hours of day-time video. In this dataset, we tracked over 12 000 cars and analyzed their trajectories. The results show that the selected approach is functional and provides information that would be hard to mine otherwise. After application of the horizontal markings, the drivers slowed down and shifted slightly towards the outer side of the curvature.
Název v anglickém jazyce
Analysis of Vehicle Trajectories for Determining Cross-Sectional Load Density Based on Computer Vision
Popis výsledku anglicky
The goal of this work was to analyze the behavior of vehicles on third-grade roads with and without horizontal lane markings with small curvature (R <= 200m). The roads are not frequented by many vehicles, and therefore, a general short-term study would not be able to provide enough data. We used recording devices for long-term (weeks) recording of the traffic and designed a system for analyzing the trajectories of the vehicles employing computer vision. We collected a dataset at 6 distinct locations, containing 1 010 hours of day-time video. In this dataset, we tracked over 12 000 cars and analyzed their trajectories. The results show that the selected approach is functional and provides information that would be hard to mine otherwise. After application of the horizontal markings, the drivers slowed down and shifted slightly towards the outer side of the curvature.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 22th International Conference on Intelligenet Transportation Systems (ITSC)
ISBN
978-1-5386-7024-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1001-1006
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Auckland
Místo konání akce
Auckland
Datum konání akce
27. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—