Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fault Recovery for Coarse-Grained TMR Soft-Core Processor Using Partial Reconfiguration and State Synchronization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU136526" target="_blank" >RIV/00216305:26230/19:PU136526 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12002/" target="_blank" >https://www.fit.vut.cz/research/publication/12002/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fault Recovery for Coarse-Grained TMR Soft-Core Processor Using Partial Reconfiguration and State Synchronization

  • Popis výsledku v původním jazyce

    SRAM FPGAs are being more commonly integrated into safety-critical systems nowadays. These digital circuits can provide suitable platform for a fault tolerant system implementation meeting the trade-offs between performance, reliability, cost and hardware resources. However, SRAM technology is vulnerable to radiation-induced faults and mainly to Single Event Upset (SEU) effect. The SEU can cause "bitflip" faults in SRAM memory cells which may affect internal FPGA routing (clock and reset signals), user memory (flip-flops, block RAM) and the functionality of implemented circuits. SEU mitigation must be implemented into the safety-critical design to achieve required system reliability in the harsh environment. SEU mitigation strategy may combine hardware redundancy and Partial Dynamic Reconfiguration (PDR) in order to implement error detection, self-repair ability and fault recovery mechanism into the system. With respect to the compromise between the system reliability and the resource overhead, various hardware redundancy schemes can be used. The most used form is Triple Modular Redundancy (TMR) which can be applied on different granularity levels in the system design. Coarse-grained TMR and PDR are often combined in one reconfigurable architecture. The time between SEU occurrence and the completion of fault recovery become a crucial parameter because the reliability of the TMR with one failed replica is worse than the reliability of an unprotected system. The fault recovery process can be generally divided into three phases: 1) fault detection, 2) fault removal by reconfiguration of a region containing replica identified as faulty, and 3) state synchronization bringing the reconfigured replica into the operating state consistent with other correctly operating replicas. Combination of TMR and PDR is the approach also often addressed by fault mitigation methods designed for soft-core processors. The processor state is stored in internal memor

  • Název v anglickém jazyce

    Fault Recovery for Coarse-Grained TMR Soft-Core Processor Using Partial Reconfiguration and State Synchronization

  • Popis výsledku anglicky

    SRAM FPGAs are being more commonly integrated into safety-critical systems nowadays. These digital circuits can provide suitable platform for a fault tolerant system implementation meeting the trade-offs between performance, reliability, cost and hardware resources. However, SRAM technology is vulnerable to radiation-induced faults and mainly to Single Event Upset (SEU) effect. The SEU can cause "bitflip" faults in SRAM memory cells which may affect internal FPGA routing (clock and reset signals), user memory (flip-flops, block RAM) and the functionality of implemented circuits. SEU mitigation must be implemented into the safety-critical design to achieve required system reliability in the harsh environment. SEU mitigation strategy may combine hardware redundancy and Partial Dynamic Reconfiguration (PDR) in order to implement error detection, self-repair ability and fault recovery mechanism into the system. With respect to the compromise between the system reliability and the resource overhead, various hardware redundancy schemes can be used. The most used form is Triple Modular Redundancy (TMR) which can be applied on different granularity levels in the system design. Coarse-grained TMR and PDR are often combined in one reconfigurable architecture. The time between SEU occurrence and the completion of fault recovery become a crucial parameter because the reliability of the TMR with one failed replica is worse than the reliability of an unprotected system. The fault recovery process can be generally divided into three phases: 1) fault detection, 2) fault removal by reconfiguration of a region containing replica identified as faulty, and 3) state synchronization bringing the reconfigured replica into the operating state consistent with other correctly operating replicas. Combination of TMR and PDR is the approach also often addressed by fault mitigation methods designed for soft-core processors. The processor state is stored in internal memor

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20206 - Computer hardware and architecture

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 7th Prague Embedded Systems Workshop

  • ISBN

    978-80-01-06607-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    2

  • Strana od-do

    6-7

  • Název nakladatele

    Faculty of Information Technology, Czech Technical University

  • Místo vydání

    Roztoky u Prahy

  • Místo konání akce

    Roztoky u Prahy

  • Datum konání akce

    27. 6. 2019

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku