Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Fault-tolerant Single-FPGA Systems with a Self-repair Reconfiguration Controller

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149351" target="_blank" >RIV/00216305:26230/23:PU149351 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12822/" target="_blank" >https://www.fit.vut.cz/research/publication/12822/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LASCAS56464.2023.10108372" target="_blank" >10.1109/LASCAS56464.2023.10108372</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Fault-tolerant Single-FPGA Systems with a Self-repair Reconfiguration Controller

  • Popis výsledku v původním jazyce

    Fault tolerance in electronic systems is essential in harsh environments such as space. However, FPGAs that can be used to accelerate various computations are prone to configuration memory failures that determine their function. Repairing these failures is essential to increase system resilience. For this purpose, the partial dynamic reconfiguration controller is necessary. To design a comprehensive system inside one FPGA, we force the controller to be on the same FPGA with a payload circuit. We create and thoroughly test a new reconfiguration controller to increase the system's resiliency with the ability to repair itself during its own operation. For this purpose, the FPGA controller is in coarse-grained triple modular redundancy to be able to recover despite the failure of any of its modules. The proposed controller has been tested to increase the resilience of circuits from a set of benchmark circuits. The entire system with the controller was evaluated on an actual FPGA, where faults were injected directly into the configuration memory of this FPGA. Reliability parameters are measured by a platform designed for this purpose, partly directly on the tested FPGA. As we can see from the results, the mean time to failure has been increased by up to 69% compared to a system equipped with only triple modular redundancy with a reasonable amount of hardware resources. The competitive solution brings only a 42% improvement in resilience with the same parameters.

  • Název v anglickém jazyce

    The Fault-tolerant Single-FPGA Systems with a Self-repair Reconfiguration Controller

  • Popis výsledku anglicky

    Fault tolerance in electronic systems is essential in harsh environments such as space. However, FPGAs that can be used to accelerate various computations are prone to configuration memory failures that determine their function. Repairing these failures is essential to increase system resilience. For this purpose, the partial dynamic reconfiguration controller is necessary. To design a comprehensive system inside one FPGA, we force the controller to be on the same FPGA with a payload circuit. We create and thoroughly test a new reconfiguration controller to increase the system's resiliency with the ability to repair itself during its own operation. For this purpose, the FPGA controller is in coarse-grained triple modular redundancy to be able to recover despite the failure of any of its modules. The proposed controller has been tested to increase the resilience of circuits from a set of benchmark circuits. The entire system with the controller was evaluated on an actual FPGA, where faults were injected directly into the configuration memory of this FPGA. Reliability parameters are measured by a platform designed for this purpose, partly directly on the tested FPGA. As we can see from the results, the mean time to failure has been increased by up to 69% compared to a system equipped with only triple modular redundancy with a reasonable amount of hardware resources. The competitive solution brings only a 42% improvement in resilience with the same parameters.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20206 - Computer hardware and architecture

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    LASCAS 2023 - 14th IEEE Latin American Symposium on Circuits and Systems, Proceedings

  • ISBN

    978-1-6654-5705-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    104-107

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Quito

  • Místo konání akce

    QUITO, ECUADOR

  • Datum konání akce

    28. 2. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000990483600026