On the Position of Chaotic Trajectories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU125855" target="_blank" >RIV/00216305:26620/17:PU125855 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10884-016-9520-z" target="_blank" >https://link.springer.com/article/10.1007/s10884-016-9520-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-016-9520-z" target="_blank" >10.1007/s10884-016-9520-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Position of Chaotic Trajectories
Popis výsledku v původním jazyce
The main purpose of this paper is to locate trajectories of a perturbed system, which is known to behave chaotically. The unperturbed system is assumed to have the origin as a hyperbolic fixed point, and to admit a trajectory homoclinic to the origin. This homocline is assumed to lie in a prescribed region having the origin in its border. Using a Mel’nikov type approach, we introduce natural conditions ensuring that all the chaotic trajectories of the perturbed system, given by classical results, lie in the same region. The applicability of our results is illustrated in two examples. In the first one, we find positive radial solutions for a class of P.D.E.’s, obtaining new results in the case of critical equations ruled by Laplacian with Hardy potentials. In the other one, we show that under certain conditions one of two weakly coupled pendula moves in one direction only.
Název v anglickém jazyce
On the Position of Chaotic Trajectories
Popis výsledku anglicky
The main purpose of this paper is to locate trajectories of a perturbed system, which is known to behave chaotically. The unperturbed system is assumed to have the origin as a hyperbolic fixed point, and to admit a trajectory homoclinic to the origin. This homocline is assumed to lie in a prescribed region having the origin in its border. Using a Mel’nikov type approach, we introduce natural conditions ensuring that all the chaotic trajectories of the perturbed system, given by classical results, lie in the same region. The applicability of our results is illustrated in two examples. In the first one, we find positive radial solutions for a class of P.D.E.’s, obtaining new results in the case of critical equations ruled by Laplacian with Hardy potentials. In the other one, we show that under certain conditions one of two weakly coupled pendula moves in one direction only.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: CEITEC - central european institute of technology</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Dynamics and Differential Equations
ISSN
1040-7294
e-ISSN
1572-9222
Svazek periodika
29
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
1423-1458
Kód UT WoS článku
000415618400009
EID výsledku v databázi Scopus
2-s2.0-84958767311