Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anodic formation and biomedical properties of hafnium-oxide nanofilms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU131349" target="_blank" >RIV/00216305:26620/19:PU131349 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2019/TB/C8TB03180K#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2019/TB/C8TB03180K#!divAbstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c8tb03180k" target="_blank" >10.1039/c8tb03180k</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anodic formation and biomedical properties of hafnium-oxide nanofilms

  • Popis výsledku v původním jazyce

    Hafnium dioxide (HfO2) is attracting attention for bio-related applications due to its good cytocompatibility, high density, and resistance to corrosion and mechanical damage. Here we synthesize two types of hafnium-oxide thin films on substrates via self-organized electrochemical anodization: an array of hierarchically structured nanorods anchored to a thin oxide layer and a microscopically flat oxide film. The nanostructured film is composed of a unique mixture of HfO2, suboxide Hf2O3, and oxide-hydroxide compound HfO2 nH2O whereas the flat film is mainly HfO2. In vitro interaction of the two films with MG 63 osteoblast-like cells and gram-negative E coli bacteria is studied for the first time to assess the potential of the films for biomedical application. Both films reveal good cytocompatibility and affinity for proteins, represented by fibronectin and especially albumin, which is absorbed in nine times larger amount. The morphology and specific surface chemistry of the nanostructured film cause a two-fold enhanced antibacterial effect, better cell attachment, significantly improved proliferation of cells, five-fold rise in the cellular Young modulus, slightly stronger production of reactive oxygen species, and formation of cell clusters. Compared with the flat film, the nanostructured one features the weakening of AFM measured adhesion force at the cell surface interface, probably caused by partially lifting the nanorods from the substrate due to the strong contact with cells. The present findings deepen the understanding of biological processes at the living cell metal-oxide interface, underlying the role of surface chemistry and the impact of nanostructuring at the nanoscale.

  • Název v anglickém jazyce

    Anodic formation and biomedical properties of hafnium-oxide nanofilms

  • Popis výsledku anglicky

    Hafnium dioxide (HfO2) is attracting attention for bio-related applications due to its good cytocompatibility, high density, and resistance to corrosion and mechanical damage. Here we synthesize two types of hafnium-oxide thin films on substrates via self-organized electrochemical anodization: an array of hierarchically structured nanorods anchored to a thin oxide layer and a microscopically flat oxide film. The nanostructured film is composed of a unique mixture of HfO2, suboxide Hf2O3, and oxide-hydroxide compound HfO2 nH2O whereas the flat film is mainly HfO2. In vitro interaction of the two films with MG 63 osteoblast-like cells and gram-negative E coli bacteria is studied for the first time to assess the potential of the films for biomedical application. Both films reveal good cytocompatibility and affinity for proteins, represented by fibronectin and especially albumin, which is absorbed in nine times larger amount. The morphology and specific surface chemistry of the nanostructured film cause a two-fold enhanced antibacterial effect, better cell attachment, significantly improved proliferation of cells, five-fold rise in the cellular Young modulus, slightly stronger production of reactive oxygen species, and formation of cell clusters. Compared with the flat film, the nanostructured one features the weakening of AFM measured adhesion force at the cell surface interface, probably caused by partially lifting the nanorods from the substrate due to the strong contact with cells. The present findings deepen the understanding of biological processes at the living cell metal-oxide interface, underlying the role of surface chemistry and the impact of nanostructuring at the nanoscale.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-13732S" target="_blank" >GA17-13732S: Multifunkční pole nanodrátků z elektrokeramických materiálů na bázi HfO2 a ZrO2 vysoce uspořádaných na substrátu (ZiHaN)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Chemistry B

  • ISSN

    2050-750X

  • e-ISSN

    2050-7518

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    2300-2310

  • Kód UT WoS článku

    000464418200005

  • EID výsledku v databázi Scopus

    2-s2.0-85063871415