On Improving TLS Identification Results Using Nuisance Variables with Application on PMSM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142091" target="_blank" >RIV/00216305:26620/21:PU142091 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9589402" target="_blank" >https://ieeexplore.ieee.org/document/9589402</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON48115.2021.9589402" target="_blank" >10.1109/IECON48115.2021.9589402</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Improving TLS Identification Results Using Nuisance Variables with Application on PMSM
Popis výsledku v původním jazyce
This article presents a novel total least-squares based method for errors-in-variables model identification with a known structure. This method considers the errors of both input and output variables and thus achieves more accurate estimates compared to conventional ordinary least-squares based methods. The introduced method consists of two recursive total least-squares algorithms connected in a hierarchical structure, which allows for exploitation of nuisance variables and a priori known structure of the identified model. The total least-squares (TLS) method is introduced, and a new “nuisance improved hierarchical total least-squares” (nHTLS) method is derived. Its properties are discussed and proved by simulations. Furthermore, the method is applied in a practical experiment consisting of the state-space identification of the permanent magnet synchronous motor (PMSM). The introduced method is compared with TLS and proven to provide measurably superior dynamical behavior and smaller estimation error of results.
Název v anglickém jazyce
On Improving TLS Identification Results Using Nuisance Variables with Application on PMSM
Popis výsledku anglicky
This article presents a novel total least-squares based method for errors-in-variables model identification with a known structure. This method considers the errors of both input and output variables and thus achieves more accurate estimates compared to conventional ordinary least-squares based methods. The introduced method consists of two recursive total least-squares algorithms connected in a hierarchical structure, which allows for exploitation of nuisance variables and a priori known structure of the identified model. The total least-squares (TLS) method is introduced, and a new “nuisance improved hierarchical total least-squares” (nHTLS) method is derived. Its properties are discussed and proved by simulations. Furthermore, the method is applied in a practical experiment consisting of the state-space identification of the permanent magnet synchronous motor (PMSM). The introduced method is compared with TLS and proven to provide measurably superior dynamical behavior and smaller estimation error of results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000024" target="_blank" >TN01000024: Národní centrum kompetence - Kybernetika a umělá inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society
ISBN
978-1-6654-3554-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Toronto
Datum konání akce
13. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000767230601164