Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F29142890%3A_____%2F21%3A00041385" target="_blank" >RIV/29142890:_____/21:00041385 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/13/8/4572/htm" target="_blank" >https://www.mdpi.com/2071-1050/13/8/4572/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su13084572" target="_blank" >10.3390/su13084572</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control
Popis výsledku v původním jazyce
This article deals with the use of neural networks for estimation of deceleration model parameters for the adaptive cruise control unit. The article describes the basic functionality of adaptive cruise control and creates a mathematical model of braking, which is one of the basic functions of adaptive cruise control. Furthermore, an analysis of the influences acting in the braking process is performed, the most significant of which are used in the design of deceleration prediction for the adaptive cruise control unit using neural networks. Such a connection using artificial neural networks using modern sensors can be another step towards full vehicle autonomy. The advantage of this approach is the original use of neural networks, which refines the determination of the deceleration value of the vehicle in front of a static or dynamic obstacle, while including a number of influences that affect the braking process and thus increase driving safety.
Název v anglickém jazyce
Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control
Popis výsledku anglicky
This article deals with the use of neural networks for estimation of deceleration model parameters for the adaptive cruise control unit. The article describes the basic functionality of adaptive cruise control and creates a mathematical model of braking, which is one of the basic functions of adaptive cruise control. Furthermore, an analysis of the influences acting in the braking process is performed, the most significant of which are used in the design of deceleration prediction for the adaptive cruise control unit using neural networks. Such a connection using artificial neural networks using modern sensors can be another step towards full vehicle autonomy. The advantage of this approach is the original use of neural networks, which refines the determination of the deceleration value of the vehicle in front of a static or dynamic obstacle, while including a number of influences that affect the braking process and thus increase driving safety.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000645367400001
EID výsledku v databázi Scopus
—