Effect of the Concentration of Bioethanol Mixed with Gasoline on the Energy and Environmental Performance of a Hybrid Vehicle in the Worldwide Harmonized Light Vehicles Test Cycle (WLTC)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00013438" target="_blank" >RIV/46747885:24210/24:00013438 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app142310858" target="_blank" >https://doi.org/10.3390/app142310858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app142310858" target="_blank" >10.3390/app142310858</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of the Concentration of Bioethanol Mixed with Gasoline on the Energy and Environmental Performance of a Hybrid Vehicle in the Worldwide Harmonized Light Vehicles Test Cycle (WLTC)
Popis výsledku v původním jazyce
Increasing the use of renewable biofuels in internal-combustion-engine (ICE) vehicles is a key strategy for reducing greenhouse gas emissions and conserving fossil fuels. Hybrid vehicles used in urban environments significantly reduce fuel consumption compared to conventional internal-combustion-engine cars. In hybrid vehicles integrating electric propulsion with biofuels offers even more significant potential to lower fuel consumption. One would like to think they should also be less polluted in all cases, but some results show that the opposite is true. This study‘s aim was to evaluate a hybrid vehicle‘s energy and environmental performance using different gasoline-bioethanol blends. A Worldwide Harmonized Light Vehicles Test Cycle (WLTC) study was conducted on a Toyota Prius II hybrid vehicle to assess changes in energy and environmental performance. During the WLTC test, data were collected from the chassis dynamometer, exhaust gas analyser, fuel consumption meter, and engine control unit (ECU). The collected data were synchronised, and calculations were performed to determine the ICE cycle work, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), pollutant emissions (CO, HC, and NOx), CO2 mass emissions per cycle, and brake specific pollutant emissions per kilometre. The study shows that the performance of the hybrid vehicle‘s ICE is strongly influenced by the utilisation of electrical energy stored in the battery, especially at low and medium speeds. As the bioethanol concentration increases, the engine‘s ECU advances the ignition timing based on the knock sensor signal. A comprehensive evaluation using the WLTC indicates that increasing the bioethanol concentration up to 70% improves the energy efficiency of the hybrid vehicle‘s internal combustion engine and reduces pollutant and CO2 emissions.
Název v anglickém jazyce
Effect of the Concentration of Bioethanol Mixed with Gasoline on the Energy and Environmental Performance of a Hybrid Vehicle in the Worldwide Harmonized Light Vehicles Test Cycle (WLTC)
Popis výsledku anglicky
Increasing the use of renewable biofuels in internal-combustion-engine (ICE) vehicles is a key strategy for reducing greenhouse gas emissions and conserving fossil fuels. Hybrid vehicles used in urban environments significantly reduce fuel consumption compared to conventional internal-combustion-engine cars. In hybrid vehicles integrating electric propulsion with biofuels offers even more significant potential to lower fuel consumption. One would like to think they should also be less polluted in all cases, but some results show that the opposite is true. This study‘s aim was to evaluate a hybrid vehicle‘s energy and environmental performance using different gasoline-bioethanol blends. A Worldwide Harmonized Light Vehicles Test Cycle (WLTC) study was conducted on a Toyota Prius II hybrid vehicle to assess changes in energy and environmental performance. During the WLTC test, data were collected from the chassis dynamometer, exhaust gas analyser, fuel consumption meter, and engine control unit (ECU). The collected data were synchronised, and calculations were performed to determine the ICE cycle work, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), pollutant emissions (CO, HC, and NOx), CO2 mass emissions per cycle, and brake specific pollutant emissions per kilometre. The study shows that the performance of the hybrid vehicle‘s ICE is strongly influenced by the utilisation of electrical energy stored in the battery, especially at low and medium speeds. As the bioethanol concentration increases, the engine‘s ECU advances the ignition timing based on the knock sensor signal. A comprehensive evaluation using the WLTC indicates that increasing the bioethanol concentration up to 70% improves the energy efficiency of the hybrid vehicle‘s internal combustion engine and reduces pollutant and CO2 emissions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001376234900001
EID výsledku v databázi Scopus
2-s2.0-85211820825