Speaker Diarization of Broadcast Streams using Two-stage Clustering based on I-vectors and Cosine Distance Scoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F12%3A%230002004" target="_blank" >RIV/46747885:24220/12:#0002004 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speaker Diarization of Broadcast Streams using Two-stage Clustering based on I-vectors and Cosine Distance Scoring
Popis výsledku v původním jazyce
In this paper we present our system for speaker diarization of broadcast news based on recent advances in the speaker recognition field. In the system, speaker segments determined by the speaker changepoint detector are represented by i-vectors and similarity of segments? speakers evaluated using cosine distance scoring. Linear discriminant analysis is employed to cope with intra-speaker variability. The experiments were carried out using the COST278 multilingual broadcast news database. We demonstrateimprovement of the performance over the baseline system based on the Bayesian Information Criterion (BIC) and highlight significant impact of cepstral mean normalization. Finally, two-stage clustering employing BIC-based clustering to pre-cluster segments in the first stage is examined and showed to yield further performance improvement. The best performing configuration of our system achieved 52.4 % relative improvement of the speaker error rate over the baseline.
Název v anglickém jazyce
Speaker Diarization of Broadcast Streams using Two-stage Clustering based on I-vectors and Cosine Distance Scoring
Popis výsledku anglicky
In this paper we present our system for speaker diarization of broadcast news based on recent advances in the speaker recognition field. In the system, speaker segments determined by the speaker changepoint detector are represented by i-vectors and similarity of segments? speakers evaluated using cosine distance scoring. Linear discriminant analysis is employed to cope with intra-speaker variability. The experiments were carried out using the COST278 multilingual broadcast news database. We demonstrateimprovement of the performance over the baseline system based on the Bayesian Information Criterion (BIC) and highlight significant impact of cepstral mean normalization. Finally, two-stage clustering employing BIC-based clustering to pre-cluster segments in the first stage is examined and showed to yield further performance improvement. The best performing configuration of our system achieved 52.4 % relative improvement of the speaker error rate over the baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TA01011204" target="_blank" >TA01011204: Živé archivy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. of International Conference on Acoustics, Speech, and Signal Processing - ICASSP 2012
ISBN
978-1-4673-0046-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
4193-4196
Název nakladatele
—
Místo vydání
Japonsko
Místo konání akce
Tokyo, Japonsko
Datum konání akce
1. 1. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000312381404066