Using Deep Neural Networks for Identification of Slavic Languages from Acoustic Signal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006130" target="_blank" >RIV/46747885:24220/18:00006130 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.21437/Interspeech.2018-1165" target="_blank" >http://dx.doi.org/10.21437/Interspeech.2018-1165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2018-1165" target="_blank" >10.21437/Interspeech.2018-1165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Deep Neural Networks for Identification of Slavic Languages from Acoustic Signal
Popis výsledku v původním jazyce
This paper investigates the use of deep neural networks (DNNs) for the task of spoken language identification. Various feed-forward fully connected, convolutional and recurrent DNN architectures are adopted and compared against a baseline i-vector based system. Moreover, DNNs are also utilized for extraction of bottleneck features from the input signal. The dataset used for experimental evaluation contains utterances belonging to languages that are all related to each other and sometimes hard to distinguish even for human listeners: it is compiled from recordings of the 11 most widespread Slavic languages. We also released this Slavic dataset to the general public, because a similar collection is not publicly available through any other source. The best results were yielded by a bidirectional recurrent DNN with gated recurrent units that was fed by bottleneck features. In this case, the baseline ER was reduced from 4.2% to 1.2% and Cavg from 2.3% to 0.6%. © 2018 International Speech Communication Association. All rights reserved.
Název v anglickém jazyce
Using Deep Neural Networks for Identification of Slavic Languages from Acoustic Signal
Popis výsledku anglicky
This paper investigates the use of deep neural networks (DNNs) for the task of spoken language identification. Various feed-forward fully connected, convolutional and recurrent DNN architectures are adopted and compared against a baseline i-vector based system. Moreover, DNNs are also utilized for extraction of bottleneck features from the input signal. The dataset used for experimental evaluation contains utterances belonging to languages that are all related to each other and sometimes hard to distinguish even for human listeners: it is compiled from recordings of the 11 most widespread Slavic languages. We also released this Slavic dataset to the general public, because a similar collection is not publicly available through any other source. The best results were yielded by a bidirectional recurrent DNN with gated recurrent units that was fed by bottleneck features. In this case, the baseline ER was reduced from 4.2% to 1.2% and Cavg from 2.3% to 0.6%. © 2018 International Speech Communication Association. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1803-1807
Název nakladatele
ISCA
Místo vydání
Indie
Místo konání akce
Hyderabad, India
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—