Object Detection by Tiny-YOLO on TurtleBot3 as an Educational Robot
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F23%3A00011235" target="_blank" >RIV/46747885:24220/23:00011235 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/23:00011235
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-99-2322-9_47" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-99-2322-9_47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-2322-9_47" target="_blank" >10.1007/978-981-99-2322-9_47</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Object Detection by Tiny-YOLO on TurtleBot3 as an Educational Robot
Popis výsledku v původním jazyce
By the unceasing efforts of many scientists, machine learning algorithms are increasing quickly with an enhanced object detection performance for the explicit applications on specific devices. This paper investigates the operation of TurtleBot3 as an educational wheeled autonomous robot which Tiny-YOLO algorithm has been applied as a novel application on it. At first, the required knowledge about the kinematics and dynamics of a differential drive robot with constraints is studied, and a graph where the robot is working under some specific conditions is plotted. The robot operating system (ROS) and simultaneous localization and mapping (SLAM) of the TurtleBot3 have been explained. The robot is equipped with a LiDAR sensor and a camera embedded onto it as a sensor fusion SLAM for a more precise type of mapping. Finally, Tiny-YOLO as a machine learning algorithm for object detection is implemented based on the fact that Raspberry Pi could not handle the full YOLO due to its memory capacity limitation, and the results are discussed.
Název v anglickém jazyce
Object Detection by Tiny-YOLO on TurtleBot3 as an Educational Robot
Popis výsledku anglicky
By the unceasing efforts of many scientists, machine learning algorithms are increasing quickly with an enhanced object detection performance for the explicit applications on specific devices. This paper investigates the operation of TurtleBot3 as an educational wheeled autonomous robot which Tiny-YOLO algorithm has been applied as a novel application on it. At first, the required knowledge about the kinematics and dynamics of a differential drive robot with constraints is studied, and a graph where the robot is working under some specific conditions is plotted. The robot operating system (ROS) and simultaneous localization and mapping (SLAM) of the TurtleBot3 have been explained. The robot is equipped with a LiDAR sensor and a camera embedded onto it as a sensor fusion SLAM for a more precise type of mapping. Finally, Tiny-YOLO as a machine learning algorithm for object detection is implemented based on the fact that Raspberry Pi could not handle the full YOLO due to its memory capacity limitation, and the results are discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-981992321-2
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
12
Strana od-do
619 - 630
Název nakladatele
Springer
Místo vydání
—
Místo konání akce
New Delhi
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—