Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Wavelet Method for Pricing Options with Stochastic Volatility

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F17%3A00005206" target="_blank" >RIV/46747885:24510/17:00005206 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://fim2.uhk.cz/mme/index.php?page=conferenceproceedings" target="_blank" >http://fim2.uhk.cz/mme/index.php?page=conferenceproceedings</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Wavelet Method for Pricing Options with Stochastic Volatility

  • Popis výsledku v původním jazyce

    We use the Heston stochastic volatility model for calculating the theoretical price of an option. While the Black-Scholes model assumes that the volatility of the asset is constant or a deterministic function, the Heston model assumes that the volatility is a random process. The Heston model is represented by a parabolic equation. For its efficient numerical solution, we use the theta scheme for the time discretization and we propose an adaptive wavelet method for the discretization of the equation on the given time level. We construct a piecewise linear wavelet basis and use it in the scheme. The advantage of wavelets is their compression property. It means that the representation of the solution in a wavelet basis requires a small number of coefficients and the computation of the solution can be performed with the small number of parameters. Numerical example is presented for the European put option.

  • Název v anglickém jazyce

    Wavelet Method for Pricing Options with Stochastic Volatility

  • Popis výsledku anglicky

    We use the Heston stochastic volatility model for calculating the theoretical price of an option. While the Black-Scholes model assumes that the volatility of the asset is constant or a deterministic function, the Heston model assumes that the volatility is a random process. The Heston model is represented by a parabolic equation. For its efficient numerical solution, we use the theta scheme for the time discretization and we propose an adaptive wavelet method for the discretization of the equation on the given time level. We construct a piecewise linear wavelet basis and use it in the scheme. The advantage of wavelets is their compression property. It means that the representation of the solution in a wavelet basis requires a small number of coefficients and the computation of the solution can be performed with the small number of parameters. Numerical example is presented for the European put option.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-09541S" target="_blank" >GA16-09541S: Robustní numerická schémata pro oceňování vybraných opcí za různých tržních podmínek</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    35th International Conference Mathematical Methods in Economics (MME)

  • ISBN

    978-80-7435-678-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    96-101

  • Název nakladatele

    Univerzita Hradec Králové

  • Místo vydání

    Hradec Králové

  • Místo konání akce

    Hradec Králové

  • Datum konání akce

    1. 1. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000427151400017