Numerical Pricing of American-Style Options within the Black and Scholes Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F18%3A00008637" target="_blank" >RIV/46747885:24510/18:00008637 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ekf.vsb.cz/cerei/cs/aktualni-cislo/archiv/rocnik-21/index.html" target="_blank" >https://www.ekf.vsb.cz/cerei/cs/aktualni-cislo/archiv/rocnik-21/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7327/cerei.2018.12.03" target="_blank" >10.7327/cerei.2018.12.03</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Pricing of American-Style Options within the Black and Scholes Framework
Popis výsledku v původním jazyce
Option pricing is one of the classical problems in financial engineering. Since exact solutions in analytical form are available for simple option contracts in particular, a numerical approach is desirable due to the fact that relaxed standard assumptions do not allow the construction of such solutions. In this paper,we consider the problem of pricing American-style options in the classical Black–Scholes framework; that is, we admit the early exercise feature. This constraint can be viewed as an additional non-linear source term in the option-pricing partial differential equation. The contribution of the paper lies in the proposal of a numerical scheme to solve this pricing equation and in the relationship of the presented technique with the existing pricing approaches. The numerical approach is based on the modification of the discontinuous Galerkin method incorporating a penalty term that handles the early exercise constraint. The capabilities of the scheme derived are documented using reference experiments and compared with the standard finite difference method.
Název v anglickém jazyce
Numerical Pricing of American-Style Options within the Black and Scholes Framework
Popis výsledku anglicky
Option pricing is one of the classical problems in financial engineering. Since exact solutions in analytical form are available for simple option contracts in particular, a numerical approach is desirable due to the fact that relaxed standard assumptions do not allow the construction of such solutions. In this paper,we consider the problem of pricing American-style options in the classical Black–Scholes framework; that is, we admit the early exercise feature. This constraint can be viewed as an additional non-linear source term in the option-pricing partial differential equation. The contribution of the paper lies in the proposal of a numerical scheme to solve this pricing equation and in the relationship of the presented technique with the existing pricing approaches. The numerical approach is based on the modification of the discontinuous Galerkin method incorporating a penalty term that handles the early exercise constraint. The capabilities of the scheme derived are documented using reference experiments and compared with the standard finite difference method.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ekonomická revue – Central European Review of Economic Issues
ISSN
1212-3951
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
117-123
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—