Numerical pricing of American options on extrema with continuous sampling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F21%3A00009605" target="_blank" >RIV/46747885:24510/21:00009605 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ekf.vsb.cz/cerei/cs/aktualni-cislo/archiv/rocnik-24/" target="_blank" >https://www.ekf.vsb.cz/cerei/cs/aktualni-cislo/archiv/rocnik-24/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7327/cerei.2021.03.03" target="_blank" >10.7327/cerei.2021.03.03</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical pricing of American options on extrema with continuous sampling
Popis výsledku v původním jazyce
One of the typical option classes is formed by lookback options whose values depend also on the extrema of the underlying asset over a certain period of time. Moreover, incorporating the American constraint, which admits early exercise, has increased the popularity of these hedging and speculation instruments over recent years. In this paper, we consider the problem of pricing continuously observed American-style lookback options with fixed strike. Since no analytic formulae exist for this case, we follow an approach that formulates the corresponding option pricing problem as the parabolic partial differential inequality subject to a constraint, handled by a penalty technique. As a result, we obtain the pricing equation restricted to a triangular domain, where the path-dependent variable appears as a parameter only in the initial and boundary conditions. The contribution of the paper lies in the proposal of a numerical scheme that solves this option pricing problem. The numerical technique proposed arises from the discontinuous Galerkin that enables easy implementation of penalties and weak enforcement of boundary conditions. Finally, the capabilities of the numerical scheme are demonstrated within a simple empirical study on the reference experiments.
Název v anglickém jazyce
Numerical pricing of American options on extrema with continuous sampling
Popis výsledku anglicky
One of the typical option classes is formed by lookback options whose values depend also on the extrema of the underlying asset over a certain period of time. Moreover, incorporating the American constraint, which admits early exercise, has increased the popularity of these hedging and speculation instruments over recent years. In this paper, we consider the problem of pricing continuously observed American-style lookback options with fixed strike. Since no analytic formulae exist for this case, we follow an approach that formulates the corresponding option pricing problem as the parabolic partial differential inequality subject to a constraint, handled by a penalty technique. As a result, we obtain the pricing equation restricted to a triangular domain, where the path-dependent variable appears as a parameter only in the initial and boundary conditions. The contribution of the paper lies in the proposal of a numerical scheme that solves this option pricing problem. The numerical technique proposed arises from the discontinuous Galerkin that enables easy implementation of penalties and weak enforcement of boundary conditions. Finally, the capabilities of the numerical scheme are demonstrated within a simple empirical study on the reference experiments.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ekonomická revue – Central European Review of Economic Issues
ISSN
1212-3951
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
23–30
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—