Numerical Pricing of American Lookback Options with Continuous Sampling of the Maximum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10247790" target="_blank" >RIV/61989100:27510/20:10247790 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/20:00009603
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000668460800028" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000668460800028</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Pricing of American Lookback Options with Continuous Sampling of the Maximum
Popis výsledku v původním jazyce
Exotic options whose payoff depends on the extrema of the underlying asset over a certain period of time form a class of the lookback options. Moreover, the American constraint admits early exercise and thus these contingent claims have become increasingly popular hedging and speculation instrument over recent years. In this paper we restrict ourselves to the floating and fixed strike contracts with the continuously observed maximum only. Since no analytic formulae exist for this case, we follow a PDE approach. The corresponding American lookback option pricing problem leads to the parabolic partial differential inequality subject to a constraint, which can be handled by penalty techniques. As a result, we obtain an option pricing equation of the Black-Scholes type, where the path-dependent variable appears as a parameter only in the initial and boundary conditions. The numerical approach proposed is based on the modification of the discontinuous Galerkin method incorporating a penalty term that handles the early-exercise constraint. The capabilities of the numerical scheme are demonstrated within a simple empirical study on the reference experiments.
Název v anglickém jazyce
Numerical Pricing of American Lookback Options with Continuous Sampling of the Maximum
Popis výsledku anglicky
Exotic options whose payoff depends on the extrema of the underlying asset over a certain period of time form a class of the lookback options. Moreover, the American constraint admits early exercise and thus these contingent claims have become increasingly popular hedging and speculation instrument over recent years. In this paper we restrict ourselves to the floating and fixed strike contracts with the continuously observed maximum only. Since no analytic formulae exist for this case, we follow a PDE approach. The corresponding American lookback option pricing problem leads to the parabolic partial differential inequality subject to a constraint, which can be handled by penalty techniques. As a result, we obtain an option pricing equation of the Black-Scholes type, where the path-dependent variable appears as a parameter only in the initial and boundary conditions. The numerical approach proposed is based on the modification of the discontinuous Galerkin method incorporating a penalty term that handles the early-exercise constraint. The capabilities of the numerical scheme are demonstrated within a simple empirical study on the reference experiments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13951S" target="_blank" >GA18-13951S: Nové přístupy k modelování finančních časových řad pomocí soft-computingu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
38th International Conference on Mathematical Methods in Economics (MME 2020) : conference proceedings : September 9-11, 2020, Mendel University in Brno, Czech Republic
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
186-192
Název nakladatele
Mendel University in Brno
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668460800028