Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F22%3A00011947" target="_blank" >RIV/46747885:24510/22:00011947 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/22:10250544
Výsledek na webu
<a href="https://pubs.aip.org/aip/acp/article-abstract/2505/1/080007/2827703/Option-pricing-under-the-Bates-model-using-the" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2505/1/080007/2827703/Option-pricing-under-the-Bates-model-using-the</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0100665" target="_blank" >10.1063/5.0100665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Popis výsledku v původním jazyce
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the Bates model that combines the Merton jump-diffusion model with a stochastic volatility proposed by Heston. As a result, the pricing function is governed by a partial-integro differential equation with two spatial variables, specifically, the price of the underlying asset and its variance. Moreover, the simultaneous presence of the non-local integral term arising from jumps increases the complexity of the problem. Therefore, to improve the numerical valuation we solve the corresponding governing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. Finally, the numerical results obtained are compared within the reference benchmark.
Název v anglickém jazyce
Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Popis výsledku anglicky
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the Bates model that combines the Merton jump-diffusion model with a stochastic volatility proposed by Heston. As a result, the pricing function is governed by a partial-integro differential equation with two spatial variables, specifically, the price of the underlying asset and its variance. Moreover, the simultaneous presence of the non-local integral term arising from jumps increases the complexity of the problem. Therefore, to improve the numerical valuation we solve the corresponding governing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. Finally, the numerical results obtained are compared within the reference benchmark.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-073544396-9
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
American Institute of Physics Inc.
Místo vydání
Melville, NY
Místo konání akce
Sozopol, Bulgaria
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—