Krylov subspace approach to core problems within multilinear approximation problems: A unifying framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00010098" target="_blank" >RIV/46747885:24510/23:00010098 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10468019
Výsledek na webu
<a href="https://epubs.siam.org/doi/abs/10.1137/21M1462155" target="_blank" >https://epubs.siam.org/doi/abs/10.1137/21M1462155</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1462155" target="_blank" >10.1137/21M1462155</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Krylov subspace approach to core problems within multilinear approximation problems: A unifying framework
Popis výsledku v původním jazyce
Error contaminated linear approximation problems appear in a large variety of applications. The presence of redundant or irrelevant data complicates their solution. It was shown that such data can be removed by the core reduction yielding a minimally dimensioned subproblem called the core problem. Direct (SVD or Tucker decomposion-based) reduction has been introduced previously for problems with matrix models and vector, or matrix, or tensor observations; and also for problems with bilinear models. For the cases of vector and matrix observations a Krylov subspace method, the generalized Golub--Kahan bidiagonalization, can be used to extract the core problem. In this paper, we first unify previously studied variants of linear approximation problems under the general framework of multilinear approximation problem. We show how the direct core reduction can be extended to it. Then we show that the generalized Golub--Kahan bidiagonalization yields the core problem for any multilinear approximation problem. This further allows to prove various properties of core problems, in particular we give upper bounds on the multiplicity of singular values of reduced matrices.
Název v anglickém jazyce
Krylov subspace approach to core problems within multilinear approximation problems: A unifying framework
Popis výsledku anglicky
Error contaminated linear approximation problems appear in a large variety of applications. The presence of redundant or irrelevant data complicates their solution. It was shown that such data can be removed by the core reduction yielding a minimally dimensioned subproblem called the core problem. Direct (SVD or Tucker decomposion-based) reduction has been introduced previously for problems with matrix models and vector, or matrix, or tensor observations; and also for problems with bilinear models. For the cases of vector and matrix observations a Krylov subspace method, the generalized Golub--Kahan bidiagonalization, can be used to extract the core problem. In this paper, we first unify previously studied variants of linear approximation problems under the general framework of multilinear approximation problem. We show how the direct core reduction can be extended to it. Then we show that the generalized Golub--Kahan bidiagonalization yields the core problem for any multilinear approximation problem. This further allows to prove various properties of core problems, in particular we give upper bounds on the multiplicity of singular values of reduced matrices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM journal on matrix analysis and applications
ISSN
0895-4798
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
53-79
Kód UT WoS článku
000974412700001
EID výsledku v databázi Scopus
2-s2.0-85151047636