Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Intelligence and Computational Psychological Science Connections

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00012549" target="_blank" >RIV/46747885:24620/23:00012549 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.tultech.eu/index.php/qr/article/view/3" target="_blank" >https://journals.tultech.eu/index.php/qr/article/view/3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15157/QR.2023.1.1.1-12" target="_blank" >10.15157/QR.2023.1.1.1-12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Intelligence and Computational Psychological Science Connections

  • Popis výsledku v původním jazyce

    Computational Psychological Science (CPS) is a rapidly growing field that uses computational models to study human behaviour and cognition. The development of artificial intelligence (AI) algorithms has greatly expanded the potential of CPS by providing powerful tools for modelling complex and dynamic processes in the brain. One area where AI has had a major impact on CPS is in the field of emotion recognition. Researchers can now collect large datasets of emotional facial expressions and use AI algorithms, such as convolutional neural networks (CNNs), to learn how to recognize different emotions from these images. These models can be used to generate predictions about how emotions are represented in the brain and how they are influenced by social and contextual factors. AI algorithms can also be used to optimize the parameters of computational models and improve their accuracy and predictive power. For example, evolutionary algorithms can be used to search for the set of model parameters that best fit the experimental data, while reinforcement learning algorithms can be used to optimize the model‘s decision-making policies in complex and dynamic environments. In addition to emotion recognition, AI has also been used in CPS to model other cognitive processes, such as decision-making, learning, and memory. For example, deep learning algorithms have been used to develop models of how the brain learns and represents visual and auditory stimuli, while reinforcement learning algorithms have been used to model how the brain makes decisions in uncertain and changing environments. Overall, the connection between AI and CPS has the potential to provide new insights into the computational basis of human behaviour and cognition and to develop new interventions and technologies that can improve human well-being. However, this field also raises important ethical and social issues, such as the potential impact of AI on privacy, social inequality, and the future of work. As AI and CPS continue to develop, it is important to carefully consider these issues and ensure that these technologies are used in ways that benefit society as a whole.

  • Název v anglickém jazyce

    Artificial Intelligence and Computational Psychological Science Connections

  • Popis výsledku anglicky

    Computational Psychological Science (CPS) is a rapidly growing field that uses computational models to study human behaviour and cognition. The development of artificial intelligence (AI) algorithms has greatly expanded the potential of CPS by providing powerful tools for modelling complex and dynamic processes in the brain. One area where AI has had a major impact on CPS is in the field of emotion recognition. Researchers can now collect large datasets of emotional facial expressions and use AI algorithms, such as convolutional neural networks (CNNs), to learn how to recognize different emotions from these images. These models can be used to generate predictions about how emotions are represented in the brain and how they are influenced by social and contextual factors. AI algorithms can also be used to optimize the parameters of computational models and improve their accuracy and predictive power. For example, evolutionary algorithms can be used to search for the set of model parameters that best fit the experimental data, while reinforcement learning algorithms can be used to optimize the model‘s decision-making policies in complex and dynamic environments. In addition to emotion recognition, AI has also been used in CPS to model other cognitive processes, such as decision-making, learning, and memory. For example, deep learning algorithms have been used to develop models of how the brain learns and represents visual and auditory stimuli, while reinforcement learning algorithms have been used to model how the brain makes decisions in uncertain and changing environments. Overall, the connection between AI and CPS has the potential to provide new insights into the computational basis of human behaviour and cognition and to develop new interventions and technologies that can improve human well-being. However, this field also raises important ethical and social issues, such as the potential impact of AI on privacy, social inequality, and the future of work. As AI and CPS continue to develop, it is important to carefully consider these issues and ensure that these technologies are used in ways that benefit society as a whole.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quanta Research :

  • ISSN

    2806-3279

  • e-ISSN

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    EE - Estonská republika

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus