Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Application of Artificial Intelligence (AI) in Adsorption Process of Heavy Metals, A Systematic Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F24%3A00012650" target="_blank" >RIV/46747885:24620/24:00012650 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.tultech.eu/index.php/eil/article/view/119" target="_blank" >https://journals.tultech.eu/index.php/eil/article/view/119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15157/eil.2024.2.2.57-80" target="_blank" >10.15157/eil.2024.2.2.57-80</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Application of Artificial Intelligence (AI) in Adsorption Process of Heavy Metals, A Systematic Review

  • Popis výsledku v původním jazyce

    The application of Artificial Intelligence (AI) has shown significant promise in optimizing adsorption processes for heavy metal removal, an essential component of water treatment plant (WTP) operations. This systematic review presents a comprehensive analysis of AI techniques applied to improve adsorption performance, focusing on machine learning (ML) and metaheuristic algorithms. AI models, such as neural networks and support vector machines, have been leveraged to analyze large datasets related to adsorption parameters, enhancing prediction accuracy and optimizing operational efficiency. Additionally, metaheuristic algorithms like Genetic Algorithms and Simulated Annealing contribute to efficient solution exploration, identifying optimal parameter configurations for the adsorption process. The integration of AI enables real-time monitoring, predictive maintenance, and dynamic adjustment of process parameters, thus ensuring the continuous improvement of adsorption efficiency. AI-based approaches also facilitate the identification of key adsorption features, allowing for precise control and improved resource utilization. Moreover, by combining AI with traditional adsorption models, such as Langmuir and Freundlich isotherms, this review explores new methods for improving adsorption kinetics and thermodynamics. The structured implementation of AI is demonstrated as a path forward in achieving sustainable, adaptive, and reliable solutions for water quality control. Future studies should prioritize the development of more advanced AI-driven predictive systems, enhancing the applicability of these methods across different adsorption contexts and pollutant types. This review underscores the transformative potential of AI in advancing adsorption technology, paving the way for smarter water treatment solutions that enhance environmental sustainability.

  • Název v anglickém jazyce

    The Application of Artificial Intelligence (AI) in Adsorption Process of Heavy Metals, A Systematic Review

  • Popis výsledku anglicky

    The application of Artificial Intelligence (AI) has shown significant promise in optimizing adsorption processes for heavy metal removal, an essential component of water treatment plant (WTP) operations. This systematic review presents a comprehensive analysis of AI techniques applied to improve adsorption performance, focusing on machine learning (ML) and metaheuristic algorithms. AI models, such as neural networks and support vector machines, have been leveraged to analyze large datasets related to adsorption parameters, enhancing prediction accuracy and optimizing operational efficiency. Additionally, metaheuristic algorithms like Genetic Algorithms and Simulated Annealing contribute to efficient solution exploration, identifying optimal parameter configurations for the adsorption process. The integration of AI enables real-time monitoring, predictive maintenance, and dynamic adjustment of process parameters, thus ensuring the continuous improvement of adsorption efficiency. AI-based approaches also facilitate the identification of key adsorption features, allowing for precise control and improved resource utilization. Moreover, by combining AI with traditional adsorption models, such as Langmuir and Freundlich isotherms, this review explores new methods for improving adsorption kinetics and thermodynamics. The structured implementation of AI is demonstrated as a path forward in achieving sustainable, adaptive, and reliable solutions for water quality control. Future studies should prioritize the development of more advanced AI-driven predictive systems, enhancing the applicability of these methods across different adsorption contexts and pollutant types. This review underscores the transformative potential of AI in advancing adsorption technology, paving the way for smarter water treatment solutions that enhance environmental sustainability.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    20701 - Environmental and geological engineering, geotechnics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental Industry Letters :

  • ISSN

    2806-2965

  • e-ISSN

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    EE - Estonská republika

  • Počet stran výsledku

    22

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus