Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural analysis of the behaviour of autonomous systems - customer relationship management during the Covid pandemic in EU

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000240" target="_blank" >RIV/47813059:19520/21:A0000240 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://u.pcloud.link/publink/show?code=kZus0AXZ2gcI7DeEKyBL8PkxDpCI74DctOJk" target="_blank" >https://u.pcloud.link/publink/show?code=kZus0AXZ2gcI7DeEKyBL8PkxDpCI74DctOJk</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural analysis of the behaviour of autonomous systems - customer relationship management during the Covid pandemic in EU

  • Popis výsledku v původním jazyce

    The economic and social upheavals caused by the global nature of the socio-economic environment have shown, in connection with covid19, the need for companies to target customers. Intensive customer orientation is an important factor that can influence the development of companies during the Covid pandemic. Companies, as autonomous entities, have intensively shifted customer relationship management to digital forms. In connection with the project "Creation of a model for monitoring and predicting the behaviour of autonomous systems on selected infrastructure - identification of local extremes", changes in the use of communication with customers at the level of EU countries were analysed. Using the created model, a network was generated identifying the increases and decreases in the use of software platforms for customer relationship communication. Using methods of system analysis, especially mathematical prediction, statistical methods and cluster analysis, the possible development of the number of used CRMs in EU countries is identified. Years with major declines and disproportions have been identified. The declines in developed economies (Germany, France, Austria etc.) in 2019 are specific, related mainly to the use of new forms of customer service. Clusters of countries have been identified that have the potential for rapid consolidation in the post-coronavirus period. This potential is due to the high probability of using CRM systems. The paper is an innovative implementation of system analysis methods, specifically precedent analysis, these methods allow, in contrast to other methods, to capture spatial - regional links. The analysis is conducted at the state level, as state lockdowns and closures took place at the time of the coronavirus, which was globally reflected in the same consequences in the corporate sector of individual states.

  • Název v anglickém jazyce

    Structural analysis of the behaviour of autonomous systems - customer relationship management during the Covid pandemic in EU

  • Popis výsledku anglicky

    The economic and social upheavals caused by the global nature of the socio-economic environment have shown, in connection with covid19, the need for companies to target customers. Intensive customer orientation is an important factor that can influence the development of companies during the Covid pandemic. Companies, as autonomous entities, have intensively shifted customer relationship management to digital forms. In connection with the project "Creation of a model for monitoring and predicting the behaviour of autonomous systems on selected infrastructure - identification of local extremes", changes in the use of communication with customers at the level of EU countries were analysed. Using the created model, a network was generated identifying the increases and decreases in the use of software platforms for customer relationship communication. Using methods of system analysis, especially mathematical prediction, statistical methods and cluster analysis, the possible development of the number of used CRMs in EU countries is identified. Years with major declines and disproportions have been identified. The declines in developed economies (Germany, France, Austria etc.) in 2019 are specific, related mainly to the use of new forms of customer service. Clusters of countries have been identified that have the potential for rapid consolidation in the post-coronavirus period. This potential is due to the high probability of using CRM systems. The paper is an innovative implementation of system analysis methods, specifically precedent analysis, these methods allow, in contrast to other methods, to capture spatial - regional links. The analysis is conducted at the state level, as state lockdowns and closures took place at the time of the coronavirus, which was globally reflected in the same consequences in the corporate sector of individual states.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Bussiness Information Management Association Conference (IBIMA) 2021: Innovation Management and information Technology impact on Global Economy in the Era of Pademic

  • ISBN

    9780999855171

  • ISSN

    2767-9640

  • e-ISSN

  • Počet stran výsledku

    17

  • Strana od-do

    7306-7319

  • Název nakladatele

    IBIMA

  • Místo vydání

    Seville, Spain

  • Místo konání akce

    Seville, Spain

  • Datum konání akce

    23. 11. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku