On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F22%3AA0000288" target="_blank" >RIV/47813059:19520/22:A0000288 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X22001268" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22001268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2022.08.014" target="_blank" >10.1016/j.ijar.2022.08.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels
Popis výsledku v původním jazyce
In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert’s confidence in a partic- ular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix
Název v anglickém jazyce
On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels
Popis výsledku anglicky
In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert’s confidence in a partic- ular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
150
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
242-257
Kód UT WoS článku
000860466600003
EID výsledku v databázi Scopus
—