Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000168" target="_blank" >RIV/47813059:19610/24:A0000168 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/sapm.12695" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/sapm.12695</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/sapm.12695" target="_blank" >10.1111/sapm.12695</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
Popis výsledku v původním jazyce
Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.
Název v anglickém jazyce
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
Popis výsledku anglicky
Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in Applied Mathematics
ISSN
0022-2526
e-ISSN
1467-9590
Svazek periodika
153
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
„e12695-1“-„e12695-30“
Kód UT WoS článku
001202807700001
EID výsledku v databázi Scopus
2-s2.0-85191006238